11,883 research outputs found

    Transverse-momentum-dependent wave functions and Soft functions at one-loop in Large Momentum Effective Theory

    Full text link
    In large-momentum effective theory (LaMET), the transverse-momentum-dependent (TMD) light-front wave functions and soft functions can be extracted from the simulation of a four-quark form factor and equal-time correlation functions. In this work, using expansion by regions we provide a one-loop proof of TMD factorization of the form factor. For the one-loop validation, we also present a detailed calculation of O(αs){\cal O}(\alpha_s) perturbative corrections to these quantities, in which we adopt a modern technique for the calculation of TMD form factor based the integration by part and differential equation. The one-loop hard functions are then extracted. Using lattice data from Lattice Parton Collaboration on quasi-TMDWFs, we estimate the effects from the one-loop matching kernel and find that the perturbative corrections depend on the operator to define the form factor, but are less sensitive to the transverse separation. These results will be helpful to precisely extract the soft functions and TMD wave functions from the first-principle in future

    Diaqua­bis[3-(2-sulfanylphen­yl)prop-2-enoato]zinc(II) dihydrate

    Get PDF
    In the title compound, [Zn(C9H7O2S)2(H2O)2]·2H2O, the ZnII atom (site symmetry ) is four-coordinated by two O atoms from 3-(2-sulfanylphen­yl)prop-2-enoate anions and two aqua O atoms in a slightly distorted ZnO4 square-planar arrangement. In the crystal, O—H⋯O hydrogen bonds help to establish the packing

    Bis(2-cyclo­hexyl­imino­methyl-4,6-disulfanylphenolato)nickel(II) acetonitrile solvate

    Get PDF
    In the title compound, [Ni(C13H16NOS2)2]·CH3CN, the NiII atom is four-coordinated by two N,O-bidentate Schiff base ligands, resulting in a distorted tetra­hedral coordination for the metal ion

    Standard metabolic rate predicts growth trajectory of juvenile Chinese crucian carp (Carassius auratus) under changing food availability

    Get PDF
    Phenotypic traits vary greatly within populations and can have a significant influence on aspects of performance. The present study aimed to investigate the effects of individual variation in standard metabolic rate (SMR) on growth rate and tolerance to food-deprivation in juvenile crucian carp (Carassius auratus) under varying levels of food availability. To address this issue, 19 high and 16 low SMR (individuals were randomly assigned to a satiation diet for 3 weeks, whereas another 20 high and 16 low SMR individuals were assigned to a restricted diet (approximately 50% of satiation) for the same period. Then, all fish were completely food-deprived for another 3 weeks. High SMR individuals showed a higher growth rate when fed to satiation, but this advantage of SMR did not exist in food-restricted fish. This result was related to improved feeding efficiency with decreased food intake in low SMR individuals, due to their low food processing capacity and maintenance costs. High SMR individuals experienced more mass loss during food-deprivation as compared to low SMR individuals. Our results here illustrate context-dependent costs and benefits of intraspecific variation in SMR whereby high SMR individuals show increased growth performance under high food availability but had a cost under stressful environments (i.e., food shortage)

    Kernel solver design of FPGA-based real-time simulator for active distribution networks

    Get PDF
    The field-programmable gate array (FPGA)-based real-time simulator takes advantage of many merits of FPGA, such as small time-step, high simulation precision, rich I/O interface resources, and low cost. The sparse linear equations formed by the node conductance matrix need to be solved repeatedly within each time-step, which introduces great challenges to the performance of the real-time simulator. In this paper, a fine-grained solver of the FPGA-based real-time simulator for active distribution networks is designed to meet the computational demand. The framework of the solver, offline process design on PC and online process design on FPGA are proposed in detail. The modified IEEE 33-node system with photovoltaics is simulated on a 4-FPGA-based real-time simulator. Simulation results are compared with PSCAD/EMTDC under the same conditions to validate the solver design

    Numerical Study on Mass Transfer Performance of a Spiral-like Interconnector for Planner Solid Oxide Fuel Cells

    Get PDF
    AbstractIn order to transfer more fuel of a planner SOFC (Solid Oxide Fuel Cell) from gas channel into porous anode, this paper has designed a novel spiral-like SOFC interconnector, a 3-D model is made by COMSOL 3.5a and the cell was operated with the mixture of H2 and H2O as fuel at 1023K. The result shows that, compared with conventional direct channel interconnectors, the new interconnector in this paper could not only improve the gas velocity parallel to the TPB(Triple Phase Boundary), but also with much higher gas velocity perpendicular to it, which has led to the H2 molar fraction close to the TPB in anode is almost two orders of magnitude higher than that of director channel interconnector SOFC, which would be helpful to improve the electrical performance of SOFCs
    corecore