1,016 research outputs found
Limitation of the excessive extracellular matrix turnover is a major determinant of the beneficial effect of spironolactone on survival in patients with CHF: Insights from the RALES trial
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106131/1/ejhf80350-5.pd
Cost-effectiveness of eplerenone in patients with systolic heart failure and mild symptoms
Aim In the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF), aldosterone blockade with eplerenone decreased mortality and hospitalisation in patients with mild symptoms (New York Heart Association class II) and chronic systolic heart failure (HF). The present study evaluated the cost-effectiveness of eplerenone in the treatment of these patients in the UK and Spain.<p></p>
Methods and results Results from the EMPHASIS-HF trial were used to develop a discrete-event simulation model estimating lifetime direct costs and effects (life years and quality-adjusted life years (QALYs) gained) of the addition of eplerenone to standard care among patients with chronic systolic HF and mild symptoms. Eplerenone plus standard care compared with standard care alone increased lifetime direct costs per patient by ÂŁ4284 for the UK and âŹ7358 for Spain, with additional quality-adjusted life expectancy of 1.22 QALYs for the UK and 1.33 QALYs for Spain. Mean lifetime costs were ÂŁ3520 per QALY in the UK and âŹ5532 per QALY in Spain. Probabilistic sensitivity analysis suggested a 100% likelihood of eplerenone being regarded as cost-effective at a willingness-to-pay threshold of ÂŁ20â
000 per QALY (UK) or âŹ30â
000 per QALY (Spain).<p></p>
Conclusions By currently accepted standards of value for money, the addition of eplerenone to optimal medical therapy for patients with chronic systolic HF and mild symptoms is likely to be cost-effective.<p></p>
284 Stratification of mortality by risk scores from the EPHESUS trial reveals significant interaction between left ventricular ejection fraction and Killip class
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106753/1/ehfs60196-4.pd
433 Regression analysis of mortality data from the EPHESUS trial reveals significantly higher risk of death for patients with nonâST segment elevation myocardial infarction
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106689/1/ehfs60288-x.pd
353 Eplerenone benefit at 30 days in highârisk subgroups in the EPHESUS trial
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106771/1/ehfs80218-8.pd
A network analysis to identify pathophysiological pathways distinguishing ischaemic from non-ischaemic heart failure
Aims
Heart failure (HF) is frequently caused by an ischaemic event (e.g. myocardial infarction) but might also be caused by a primary disease of the myocardium (cardiomyopathy). In order to identify targeted therapies specific for either ischaemic or nonâischaemic HF, it is important to better understand differences in underlying molecular mechanisms.
Methods and results
We performed a biological physical proteinâprotein interaction network analysis to identify pathophysiological pathways distinguishing ischaemic from nonâischaemic HF. First, differentially expressed plasma protein biomarkers were identified in 1160 patients enrolled in the BIOSTATâCHF study, 715 of whom had ischaemic HF and 445 had nonâischaemic HF. Second, we constructed an enriched physical proteinâprotein interaction network, followed by a pathway overârepresentation analysis. Finally, we identified key network proteins. Data were validated in an independent HF cohort comprised of 765 ischaemic and 100 nonâischaemic HF patients. We found 21/92 proteins to be upâregulated and 2/92 downâregulated in ischaemic relative to nonâischaemic HF patients. An enriched network of 18 proteins that were specific for ischaemic heart disease yielded six pathways, which are related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. We identified five key network proteins: acid phosphatase 5, epidermal growth factor receptor, insulinâlike growth factor binding proteinâ1, plasminogen activator urokinase receptor, and secreted phosphoprotein 1. Similar results were observed in the independent validation cohort.
Conclusions
Pathophysiological pathways distinguishing patients with ischaemic HF from those with nonâischaemic HF were related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. The five key pathway proteins identified are potential treatment targets specifically for patients with ischaemic HF
Adaptive servo-ventilation for central sleep apnea in heart failure
Background Central sleep apnea is associated with poor prognosis and death in patients with heart failure. Adaptive servo-ventilation is a therapy that uses a noninvasive ventilator to treat central sleep apnea by delivering servo-controlled inspiratory pressure support on top of expiratory positive airway pressure. We investigated the effects of adaptive servo-ventilation in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea. Methods We randomly assigned 1325 patients with a left ventricular ejection fraction of 45% or less, an apneaâhypopnea index (AHI) of 15 or more events (occurrences of apnea or hypopnea) per hour, and a predominance of central events to receive guideline-based medical treatment with adaptive servo-ventilation or guideline-based medical treatment alone (control). The primary end point in the time-to-event analysis was the first event of death from any cause, lifesaving cardiovascular intervention (cardiac transplantation, implantation of a ventricular assist device, resuscitation after sudden cardiac arrest, or appropriate lifesaving shock), or unplanned hospitalization for worsening heart failure. Results In the adaptive servo-ventilation group, the mean AHI at 12 months was 6.6 events per hour. The incidence of the primary end point did not differ significantly between the adaptive servo-ventilation group and the control group (54.1% and 50.8%, respectively; hazard ratio, 1.13; 95% confidence interval [CI], 0.97 to 1.31; P=0.10). All-cause mortality and cardiovascular mortality were significantly higher in the adaptive servo-ventilation group than in the control group (hazard ratio for death from any cause, 1.28; 95% CI, 1.06 to 1.55; P=0.01; and hazard ratio for cardiovascular death, 1.34; 95% CI, 1.09 to 1.65; P=0.006). Conclusions Adaptive servo-ventilation had no significant effect on the primary end point in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea, but all-cause and cardiovascular mortality were both increased with this therapy. (Funded by ResMed and others; SERVE-HF ClinicalTrials.gov number, NCT00733343. opens in new tab.
Effect of eplerenone on extracellular cardiac matrix biomarkers in patients with acute ST-elevation myocardial infarction without heart failure: insights from the randomized double-blind REMINDER Study
Objective: Aldosterone stimulates cardiac collagen synthesis. Circulating biomarkers of collagen turnover provide a useful tool for the assessment of cardiac remodeling in patients with an acute myocardial infarction (MI). Methods: The REMINDER trial assessed the effect of eplerenone in patients with an acute ST-elevation Myocardial Infarction (STEMI) without known heart failure (HF), when initiated within 24 h of symptom onset. The primary outcome was almost totally (>90%) driven by natriuretic peptide (NP) thresholds after 1-month post-MI (it also included a composite of cardiovascular death or re-hospitalization or new onset HF or sustained ventricular tachycardia or fibrillation or LVEF â€40% after 1-month post-MI). This secondary analysis aims to assess the extracellular matrix marker (ECMM) levels with regards to: (1) patients` characteristics; (2) determinants; (3) and eplerenone effect. Results: Serum levels of ECMM were measured in 526 (52%) of the 1012 patients enrolled in the REMINDER trial. Patients with procollagen type III N-terminal propeptide (PIIINP) above the median were older and had worse renal function (p < 0.05). Worse renal function was associated with increased levels of PIIINP (standardized ÎČ â 0.20, p < 0.05). Eplerenone reduced PIIINP when the levels of this biomarker were above the median of 3.9 ng/mL (0.13 ± 1.48 vs. -0.37 ± 1.56 ng/mL, p = 0.008). Higher levels of PIIINP were independently associated with higher proportion of NP above the prespecified thresholds (HR = 1.95, 95% CI 1.16-3.29, p = 0.012). Conclusions: Eplerenone effectively reduces PIIINP levels when baseline values were above the median. Eplerenone may limit ECMM formation in post-MI without HF
Heart failure as an endpoint in heart failure and non-heart failure cardiovascular clinical trials: the need for a consensus definition
Specific criteria have been established to define the occurrence of myocardial infarction (MI) and stroke in cardiovascular clinical trials, but there is not a consistent definition for heart failure. Heart failure events appear to occur at a rate that is similar to stroke and MI in trials of hypertension, hyperlipidaemia, diabetes, and coronary heart disease, yet a consistent approach to defining heart failure events has not yet been realized. The wide range of definitions used in clinical trials makes it difficult to interpret new data in the context of existing literature. This inconsistency has led to challenges in determining the incidence of heart failure in cardiovascular studies and the effects of interventions on these endpoints. This paper examines issues related to defining heart failure events in cardiovascular clinical trials and presents a definition to formally address this issu
Empagliflozin in Heart Failure With Predicted Preserved Versus Reduced Ejection Fraction: Data From the EMPA-REG OUTCOME Trial
Background: In the EMPA-REG OUTCOME trial, ejection fraction (EF) data were not collected. In the subpopulation with heart failure (HF), we applied a new predictive model for EF to determine the effects of empagliflozin in HF with predicted reduced (HFrEF) vs preserved (HFpEF) EF vs no HF. /
Methods and Results: We applied a validated EF predictive model based on patient baseline characteristics and treatments to categorize patients with HF as being likely to have HF with mid-range EF (HFmrEF)/HFrEF (EF <50%) or HFpEF (EF â„50%). Cox regression was used to assess the effect of empagliflozin vs placebo on cardiovascular death/HF hospitalization (HHF), cardiovascular and all-cause mortality, and HHF in patients with predicted HFpEF, HFmrEF/HFrEF and no HF. Of 7001 EMPA-REG OUTCOME patients with data available for this analysis, 6314 (90%) had no history of HF. Of the 687 with history of HF, 479 (69.7%) were predicted to have HFmrEF/HFrEF and 208 (30.3%) to have HFpEF. Empagliflozin's treatment effect was consistent in predicted HFpEF, HFmrEF/HFrEF and no-HF for each outcome (HR [95% CI] for the primary outcome 0.60 [0.31â1.17], 0.79 [0.51â1.23], and 0.63 [0.50â0.78], respectively; P interaction = 0.62). /
Conclusions: In EMPA-REG OUTCOME, one-third of the patients with HF had predicted HFpEF. The benefits of empagliflozin on HF and mortality outcomes were consistent in nonHF, predicted HFpEF and HFmrEF/HFrEF
- âŠ