984 research outputs found

    Mixed-integer convex representability

    Get PDF
    Motivated by recent advances in solution methods for mixed-integer convex optimization (MICP), we study the fundamental and open question of which sets can be represented exactly as feasible regions of MICP problems. We establish several results in this direction, including the first complete characterization for the mixed-binary case and a simple necessary condition for the general case. We use the latter to derive the first non-representability results for various non-convex sets such as the set of rank-1 matrices and the set of prime numbers. Finally, in correspondence with the seminal work on mixed-integer linear representability by Jeroslow and Lowe, we study the representability question under rationality assumptions. Under these rationality assumptions, we establish that representable sets obey strong regularity properties such as periodicity, and we provide a complete characterization of representable subsets of the natural numbers and of representable compact sets. Interestingly, in the case of subsets of natural numbers, our results provide a clear separation between the mathematical modeling power of mixed-integer linear and mixed-integer convex optimization. In the case of compact sets, our results imply that using unbounded integer variables is necessary only for modeling unbounded sets

    Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation

    Full text link
    Motivated by growing concerns over ensuring privacy on social networks, we develop new algorithms and impossibility results for fitting complex statistical models to network data subject to rigorous privacy guarantees. We consider the so-called node-differentially private algorithms, which compute information about a graph or network while provably revealing almost no information about the presence or absence of a particular node in the graph. We provide new algorithms for node-differentially private estimation for a popular and expressive family of network models: stochastic block models and their generalization, graphons. Our algorithms improve on prior work, reducing their error quadratically and matching, in many regimes, the optimal nonprivate algorithm. We also show that for the simplest random graph models (G(n,p)G(n,p) and G(n,m)G(n,m)), node-private algorithms can be qualitatively more accurate than for more complex models---converging at a rate of 1ϵ2n3\frac{1}{\epsilon^2 n^{3}} instead of 1ϵ2n2\frac{1}{\epsilon^2 n^2}. This result uses a new extension lemma for differentially private algorithms that we hope will be broadly useful
    • …
    corecore