984 research outputs found
Mixed-integer convex representability
Motivated by recent advances in solution methods for mixed-integer convex
optimization (MICP), we study the fundamental and open question of which sets
can be represented exactly as feasible regions of MICP problems. We establish
several results in this direction, including the first complete
characterization for the mixed-binary case and a simple necessary condition for
the general case. We use the latter to derive the first non-representability
results for various non-convex sets such as the set of rank-1 matrices and the
set of prime numbers. Finally, in correspondence with the seminal work on
mixed-integer linear representability by Jeroslow and Lowe, we study the
representability question under rationality assumptions. Under these
rationality assumptions, we establish that representable sets obey strong
regularity properties such as periodicity, and we provide a complete
characterization of representable subsets of the natural numbers and of
representable compact sets. Interestingly, in the case of subsets of natural
numbers, our results provide a clear separation between the mathematical
modeling power of mixed-integer linear and mixed-integer convex optimization.
In the case of compact sets, our results imply that using unbounded integer
variables is necessary only for modeling unbounded sets
Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation
Motivated by growing concerns over ensuring privacy on social networks, we
develop new algorithms and impossibility results for fitting complex
statistical models to network data subject to rigorous privacy guarantees. We
consider the so-called node-differentially private algorithms, which compute
information about a graph or network while provably revealing almost no
information about the presence or absence of a particular node in the graph.
We provide new algorithms for node-differentially private estimation for a
popular and expressive family of network models: stochastic block models and
their generalization, graphons. Our algorithms improve on prior work, reducing
their error quadratically and matching, in many regimes, the optimal nonprivate
algorithm. We also show that for the simplest random graph models ( and
), node-private algorithms can be qualitatively more accurate than for
more complex models---converging at a rate of
instead of . This result uses a new extension lemma
for differentially private algorithms that we hope will be broadly useful
- …