9 research outputs found

    Parametrization of Born-Infeld Type Phantom Dark Energy Model

    Full text link
    Applying the parametrization of dark energy density, we can construct directly independent-model potentials. In Born-Infeld type phantom dark energy model, we consider four special parametrization equation of state parameter. The evolutive behavior of dark energy density with respect to red-shift zz, potentials with respect to ϕ\phi and zz are shown mathematically. Moreover, we investigate the effect of parameter η\eta upon the evolution of the constructed potential with respect to zz. These results show that the evolutive behavior of constructed Born-Infeld type dark energy model is quite different from those of the other models.Comment: 5 pages, 4 figures, Accepted for publication in Astrophysics & Space Scienc

    Born-Infeld Type Phantom Model in the ωω\omega-\omega' Plane

    Full text link
    In this paper, we investigate the dynamics of Born-Infeld(B-I) phantom model in the ωω\omega-\omega' plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to NN(the logarithm of the scale factor aa). We find the scalar field equation of motion in ωω\omega-\omega' plane, and show mathematically the property of attractor solutions which correspond to ωϕ1\omega_\phi\sim-1, Ωϕ=1\Omega_\phi=1, which avoid the "Big rip" problem and meets the current observations well.Comment: 6 pages, 3 figures, some references adde

    Parameterization and Reconstruction of Quasi Static Universe

    Full text link
    We study a possibility of the fate of universe, in which there is neither the rip singularity, which results in the disintegration of bound systems, nor the endless expansion, instead the universe will be quasi static. We discuss the parameterization of the corresponding evolution and the reconstruction of the scalar field model. We find, with the parameterization consistent with the current observation, that the current universe might arrive at a quasi static phase after less than 20Gyr.Comment: minor changes and Refs. added, publish in EPJ

    Statefinder Diagnostic for Dilaton Dark Energy

    Full text link
    Statefinder diagnostic is a useful method which can differ one dark energy model from the others. The Statefinder pair {r,s}\{r, s\} is algebraically related to the equation of state of dark energy and its first time derivative. We apply in this paper this method to the dilaton dark energy model based on Weyl-Scaled induced gravitational theory. We investigate the effect of the coupling between matter and dilaton when the potential of dilaton field is taken as the Mexican hat form. We find that the evolving trajectory of our model in the rsr-s diagram is quite different from those of other dark energy models.Comment: 6 pages, 4 figures, type errors corrected, reference no. changed, accepted by Astrophysics and Space Scienc

    Design of the 13.2kWp Grid-Connected Tracking System

    No full text

    Activation of Vanilloid Receptor 1 (VR1) by Eugenol

    No full text
    The structural similarity of eugenol with capsaicin suggests that these two agents may share molecular mechanisms to produce their effects. We investigated the effects of eugenol in comparison with those of capsaicin using whole-cell patch clamp and Fura-2-based calcium-imaging techniques in a heterologous expression system and with sensory neurons. In vanilloid receptor 1 (VR1)-expressing human embryonic kidney (HEK) 293 cells and trigeminal ganglion (TG) neurons, eugenol activated inward currents, whereas capsazepine, a competitive VR antagonist, and ruthenium red (RR), a functional VR antagonist, completely blocked eugenol-induced inward currents. Moreover, eugenol caused elevation of [Ca2+]i, and this was completely abolished by both capsazepine and ruthenium red in VR1-expressing HEK 293 cells and TG neurons. Our results provide strong evidence that eugenol produces its effects, at least in part, via VR1 expressed by the sensory nerve endings in the teeth.This work was supported by a Grant-in-aid for scientific research from the Ministry of Health and Welfare, Republic of Korea, 00-PJ1-PG1-CH11-0004
    corecore