92,146 research outputs found

    GRB 030226 in a Density-Jump Medium

    Full text link
    We present an explanation for the unusual temporal feature of the GRB 030226 afterglow. The R-band afterglow of this burst faded as ~ t^{-1.2} in ~ 0.2 days after the burst, rebrightened during the period of ~ 0.2 - 0.5 days, and then declined with ~ t^{-2.0}. To fit such a light curve, we consider an ultrarelativistic jetted blast wave expanding in a density-jump medium. The interaction of the blast wave with a large density jump produces relativistic reverse and forward shocks. In this model, the observed rebrightening is due to emissions from these newly forming shocks, and the late-time afterglow is caused by sideways expansion of the jet. Our fitting implies that the progenitor star of GRB 030226 could have produced a stellar wind with a large density jump prior to the GRB onset.Comment: 9 pages, 1 figure, accepted for publication in ApJ Letter

    X-Ray Flares from Postmerger Millisecond Pulsars

    Full text link
    Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The X-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy release time scales. Here we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection--driven explosive events then occur, leading to multiple X-ray flares minutes after the original gamma-ray burst.Comment: 10 pages, published in Scienc

    Quakes in Solid Quark Stars

    Full text link
    A starquake mechanism for pulsar glitches is developed in the solid quark star model. It is found that the general glitch natures (i.e., the glitch amplitudes and the time intervals) could be reproduced if solid quark matter, with high baryon density but low temperature, has properties of shear modulus \mu = 10^{30~34} erg/cm^3 and critical stress \sigma_c = 10^{18~24} erg/cm^3. The post-glitch behavior may represent a kind of damped oscillations.Comment: 11 pages, 4 figures (but Fig.3 is lost), a complete version can be obtained by http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.htm, a new version to be published on Astroparticle Physic

    Aqua MODIS Electronic Crosstalk on SMWIR Bands 20 to 26

    Full text link
    Aqua MODIS Moon images obtained with bands 20 to 26 (3.66 - 4.55 and 1.36 - 1.39 μ\mum) during scheduled lunar events show evidence of electronic crosstalk contamination of the response of detector 1. In this work, we determined the sending bands for each receiving band. We found that the contaminating signal originates, in all cases, from the detector 10 of the corresponding sending band and that the signals registered by the receiving and sending detectors are always read out in immediate sequence. We used the lunar images to derive the crosstalk coefficients, which were then applied in the correction of electronic crosstalk striping artifacts present in L1B images, successfully restoring product quality.Comment: Accepted to be published in the IEEE 2017 International Geoscience & Remote Sensing Symposium (IGARSS 2017), scheduled for July 23-28, 2017 in Fort Worth, Texas, US

    The Tidal Tails of Globular Cluster Palomar 5 Based on Neural Networks Method

    Full text link
    The Sixth Data Release (DR6) in the Sloan Digital Sky Survey (SDSS) provides more photometric regions, new features and more accurate data around globular cluster Palomar 5. A new method, Back Propagation Neural Network (BPNN), is used to estimate the probability of cluster member to detect its tidal tails. Cluster and field stars, used for training the networks, are extracted over a 40×2040\times20 deg2^2 field by color-magnitude diagrams (CMDs). The best BPNNs with two hidden layers and Levenberg-Marquardt (LM) training algorithm are determined by the chosen cluster and field samples. The membership probabilities of stars in the whole field are obtained with the BPNNs, and contour maps of the probability distribution show that a tail extends 5.42\dg to the north of the cluster and a tail extends 3.77\dg to the south. The whole tails are similar to those detected by \citet{od03}, but no longer debris of the cluster is found to the northeast of the sky. The radial density profiles are investigated both along the tails and near the cluster center. Quite a few substructures are discovered in the tails. The number density profile of the cluster is fitted with the King model and the tidal radius is determined as 14.2814.28'. However, the King model cannot fit the observed profile at the outer regions (R>8R > 8') because of the tidal tails generated by the tidal force. Luminosity functions of the cluster and the tidal tails are calculated, which confirm that the tails originate from Palomar 5.Comment: 18 pages, published by RA
    corecore