49,347 research outputs found

    Power load forecasting

    Get PDF
    For the electric power factory, the power load forecasting problem, including load forecasting and consumption predicting, is crucial to work planning. According to the predicting time, it can be divided into long-term forecasting, mid-term forecasting, short-term forecasting and ultra-short-term forecasting. The long-term and mid-term forecasting are mainly used for macro control, and their forecasting time arrange are from one year to ten years and from one month to twelve months respectively. The short-term forecasting which prediction time is from one day to seven days is used in generators macroeconomic control, power exchange plan and some other areas. Predicting the situation in next 24 hours is named as the ultra-short-term forecasting which is used for failure prediction, emergency treatment and frequency control. In general, the forecast accuracy is different for different prediction time. The longer is the time, the lower accurate is the prediction. As the unique power supplier in Huizhou (China), Huizhou Electric Power wants to know the solution to the problems: 1. Prediction of the total electrical consumption and the peak load of the city in 2006 based on the economy development and the feature of the city. 2. Monthly prediction of the consumption and peak load in 2006. 3. Daily prediction of the consumption and peak load from July 10th to 16th in 2006. 4. Prediction of the load every 15 minutes of July 10th. 5. Real-time forecasting which means to amend the existing load prediction for next 15 minute

    Strangeness production in heavy ion collisions at SPS and RHIC within two-source statistical model

    Full text link
    The experimental data on hadron yields and ratios in central Pb+Pb and Au+Au collisions at SPS and RHIC energies, respectively, are analysed within a two-source statistical model of an ideal hadron gas. These two sources represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.Comment: Talk at "Strange Quarks in Matter" Conference (Strangeness'2001), September 2001, Frankfurt a.M., German

    Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Full text link
    Photo-transmutation of long-lived nuclear waste induced by high-charge relativistic electron beam (e-beam) from laser plasma accelerator is demonstrated. Collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 10^{11} per laser shot. Taking long-lived radionuclide ^{126}Sn as an example, the resulting transmutation reaction yield is the order of 10^{9} per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.Comment: 13 pages, 8 figures, it has been submitted to Physics of Plasm
    • …
    corecore