11,724 research outputs found

    Single-particle subband structure of Quantum Cables

    Full text link
    We proposed a model of Quantum Cable in analogy to the recently synthesized coaxial nanocable structure [Suenaga et al. Science, 278, 653 (1997); Zhang et al. ibid, 281, 973 (1998)], and studied its single-electron subband structure. Our results show that the subband spectrum of Quantum Cable is different from either double-quantum-wire (DQW) structure in two-dimensional electron gas (2DEG) or single quantum cylinder. Besides the double degeneracy of subbands arisen from the non-abelian mirrow reflection symmetry, interesting quasicrossings (accidental degeneracies), anticrossings and bundlings of Quantum Cable energy subbands are observed for some structure parameters. In the extreme limit (barrier width tends to infinity), the normal degeneracy of subbands different from the DQW structure is independent on the other structure parameters.Comment: 12 pages, 9 figure

    Quantum Cable as transport spectroscopy of 1D DOS of cylindrical quantum wires

    Full text link
    We considered the proposed Quantum Cable as a kind of transport spectroscopy of one-dimensional (1D) density of states (DOS) of cylindrical quantum wires. By simultaneously detecting the direct current through the cylindrical quantum wire and the leaked tunneling current into the neighboring wire at desired temperatures, one can obtain detailed information about 1D DOS and subband structure of cylindrical quantum wires.Comment: 7 pages, 4 figures, late

    Weakly Supervised Learning of Objects, Attributes and Their Associations

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-10605-2_31]”

    Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials

    Full text link
    We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two separated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the "superfluid" and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure

    Ballistic electronic transport in Quantum Cables

    Full text link
    We studied theoretically ballistic electronic transport in a proposed mesoscopic structure - Quantum Cable. Our results demonstrated that Qauntum Cable is a unique structure for the study of mesoscopic transport. As a function of Fermi energy, Ballistic conductance exhibits interesting stepwise features. Besides the steps of one or two quantum conductance units (2e2/h2e^2/h), conductance plateaus of more than two quantum conductance units can also be expected due to the accidental degeneracies (crossings) of subbands. As structure parameters is varied, conductance width displays oscillatory properties arising from the inhomogeneous variation of energy difference betweeen adjoining transverse subbands. In the weak coupling limits, conductance steps of height 2e2/h2e^2/h becomes the first and second plateaus for the Quantum Cable of two cylinder wires with the same width.Comment: 11 pages, 5 figure

    Superconductivity mediated by the antiferromagnetic spin-wave in chalcogenide iron-base superconductors

    Full text link
    The ground state of K0.8+x_{0.8+x}Fe1.6+y_{1.6+y}Se2_2 and other iron-based selenide superconductors are doped antiferromagnetic semiconductors. There are well defined iron local moments whose energies are separated from those of conduction electrons by a large band gap in these materials. We propose that the low energy physics of this system is governed by a model Hamiltonian of interacting electrons with on-site ferromagnetic exchange interactions and inter-site superexchange interactions. We have derived the effective pairing potential of electrons under the linear spin-wave approximation and shown that the superconductivity can be driven by mediating coherent spin wave excitations in these materials. Our work provides a natural account for the coexistence of superconducting and antiferromagnetic long range orders observed by neutron scattering and other experiments.Comment: 4 pages, 3 figure
    corecore