15 research outputs found

    Effects of substrate temperatures on the thermal stability of AlxOy/Pt/AlxOy multilayered selective solar absorber coatings

    No full text
    We report the effects of substrate temperatures on the thermal stability of AlxOy/Pt/AlxOy multilayered selective solar absorber coating (MSSAC). The samples were deposited at different substrate temperatures (from room temperature up to 250 °C), and then annealed at various temperatures (300–600 °C) in air for 2 h. Characterizations are made via X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), Raman Spectroscopy, UV–Vis and emissometeric measurements. These coatings were found to be thermally stable up to 500 °C with good spectral selectivity of 0.930/0.11. Furthermore, the observed decrease in the spectral selectivity 0.883/0.13 at 600 °C is attributed to the diffusion of Cu and the formation of CuO phase. Such phase formation was confirmed using XRD and Raman spectral analysis. The insensitiveness of the thermal stability of such coatings on the substrate temperature is demonstrated

    Investigation of the Thermal Stability of a Solar Absorber Processed through a Hydrothermal Technique

    No full text
    In this work, we study the thermal stability of a hydrothermally treated stainless steel (SS) selective solar absorber by annealing in air in a temperature range between 300 °C and 700 °C for a soaking time of 2 h. Thermal stability testing in the presence of air is critical if the vacuum is breached. Therefore, the SS was characterized by X-ray diffraction (XRD), mechanical, and optical techniques. The XRD analysis shows that the grain size of the as-treated absorber is 67 nm, whereas those of the annealed absorbers were found to be in the range between 66 and 38 nm. The phase of the as-treated and annealed SS was further identified by XRD as Fe2O3. The EDS result shows that the elemental components of the SS were C, Cr, Fe, and O. The strain (ε) and stress (σ) calculated for the as-treated absorber are 1.2 × 10−1 and −2.9 GPa, whereas the annealed absorbers are found in the range of 4.4 × 10−1 to 5.2 × 10−1 and −121.6 to −103.2 GPa, respectively, at 300–700 °C. The as-treated SS absorbers exhibit a good spectra selectivity of 0.938/0.431 = 2.176, which compares with 0.941/0.403 = 2.335 after being annealed at 300 °C and 0.884/0.179 = 4.939 after being annealed at 700 °C. These results indicate a small improvement in absorptivity (0.941) and emissivity (0.403) after annealing at 300 °C, followed by a significant decrease after annealing at 700 °C. The obtained analysis confirms that the annealed SS absorber exhibits excellent selectivity and is suitable to withstand any thermal condition (≤700 °C) in air. Thus, using a cost-effective approach as demonstrated in this study, the as-treated and annealed SS absorber could be used for photo-thermal conversion applications

    Investigation of the Thermal Stability of a Solar Absorber Processed through a Hydrothermal Technique

    No full text
    In this work, we study the thermal stability of a hydrothermally treated stainless steel (SS) selective solar absorber by annealing in air in a temperature range between 300 °C and 700 °C for a soaking time of 2 h. Thermal stability testing in the presence of air is critical if the vacuum is breached. Therefore, the SS was characterized by X-ray diffraction (XRD), mechanical, and optical techniques. The XRD analysis shows that the grain size of the as-treated absorber is 67 nm, whereas those of the annealed absorbers were found to be in the range between 66 and 38 nm. The phase of the as-treated and annealed SS was further identified by XRD as Fe2O3. The EDS result shows that the elemental components of the SS were C, Cr, Fe, and O. The strain (ε) and stress (σ) calculated for the as-treated absorber are 1.2 × 10−1 and −2.9 GPa, whereas the annealed absorbers are found in the range of 4.4 × 10−1 to 5.2 × 10−1 and −121.6 to −103.2 GPa, respectively, at 300–700 °C. The as-treated SS absorbers exhibit a good spectra selectivity of 0.938/0.431 = 2.176, which compares with 0.941/0.403 = 2.335 after being annealed at 300 °C and 0.884/0.179 = 4.939 after being annealed at 700 °C. These results indicate a small improvement in absorptivity (0.941) and emissivity (0.403) after annealing at 300 °C, followed by a significant decrease after annealing at 700 °C. The obtained analysis confirms that the annealed SS absorber exhibits excellent selectivity and is suitable to withstand any thermal condition (≤700 °C) in air. Thus, using a cost-effective approach as demonstrated in this study, the as-treated and annealed SS absorber could be used for photo-thermal conversion applications

    Morphological and Chemical Composition Characterization of Commercial Sepia Melanin

    No full text
    Research Article published by Science and Education Publishing Vol. 3, No. 1, 2015Melanins are difficult to characterize because of their intractable chemical properties and the heterogeneity in their structural features. Melanin pigments, in fact, are composed of many different types of monomeric units that are connected through strong carbon-carbon bonds. Its high insolubility and undefined chemical entities are two obstacles in its complete characterization. The morphological characterization and particle size distribution for sepia melanin by Scanning Electron Microscopy (SEM) on surface structure and Transmission Electron Microscopy (TEM) to confirm the morphology obtained from SEM was done. Both results show that Sepia melanin is formed by many aggregates agglomerated together. These aggregates are formed also by small spherical granules with different size distributions that have been determined using image-J software. The small granule diameter obtained from different TEM and SEM micrographs were 100-200nm. EDS reveals that C and O were the most abundant in sepia melanin with concentration average concentrations of about 57% and 24% respectively. The major compositions of sepia melanin are C, O, Na, Cl, while the minor are Mg, Ca, K, S and N. From TEM micrograph at high resolution, it was possible to measure the distance between polymers layers of sepia melanin using image-J software and it was 0.323 nm = 3.23 Å

    Single-Layered Biosynthesized Copper Oxide (CuO) Nanocoatings as Solar-Selective Absorber

    No full text
    Herein, spectrally selective single-layered CuO nanocoatings were successfully demonstrated via green synthesis and deposited on stainless steel (SS) substrates using a spin coater at 700, 800, 900, and 1000 rpm. The morphological, structural, and compositional analyses of the obtained nanocoatings were studied using SEM, XRD, EDX, and Raman spectroscopy. The SEM images show nanorod-like structure surfaces with dense surface morphology. The XRD patterns confirmed the presence of peaks indexed to a monoclinic structural phase of CuO. The EDX spectra clearly revealed the presence of Cu and O elements, and XPS spectra showed peaks of Cu2p and O1s core levels, which are typical characteristics of Cu (II) and O(II), respectively, in CuO. The Raman spectra showed peaks at 305, 344, and 642 cm−1 attributed to Raman active (Ag+2Bg) modes for Cu-O stretching. Rutherford backscattering spectrometry (RBS) determined the content of the elements and the changes in the thicknesses of the coatings with the rotational speed (RS) of the spin coater. The elemental content of Cu and O atoms were, respectively, 54 and 46%. The thicknesses were calculated to be 1.406 × 1018 atoms/cm2 (296.3 nm), 1.286 × 1018 atoms/cm2 (271.0 nm), 1.138 × 1018 atoms/cm2 (239.8 nm), and 0.985 × 1015 atoms/cm2 (207.5 nm) at 700, 800, 900 and 1000 rpm, respectively. The optical properties of the CuO nanocoatings were characterized using UV–Vis–NIR and FTIR spectrometers; its vital solar selectivity parameters of solar absorptance (α) and emissivity (ε) were evaluated in the ranges of 0.3–2.5 and 2.5–20 µm wavelengths, respectively. The obtained coatings exhibited solar parameters (α = 0.90, and ε = 0.31) associated with 700 rpm due to an intrinsic and interference-induced absorption as well as higher attenuation of light

    Single-Layered Biosynthesized Copper Oxide (CuO) Nanocoatings as Solar-Selective Absorber

    No full text
    Herein, spectrally selective single-layered CuO nanocoatings were successfully demonstrated via green synthesis and deposited on stainless steel (SS) substrates using a spin coater at 700, 800, 900, and 1000 rpm. The morphological, structural, and compositional analyses of the obtained nanocoatings were studied using SEM, XRD, EDX, and Raman spectroscopy. The SEM images show nanorod-like structure surfaces with dense surface morphology. The XRD patterns confirmed the presence of peaks indexed to a monoclinic structural phase of CuO. The EDX spectra clearly revealed the presence of Cu and O elements, and XPS spectra showed peaks of Cu2p and O1s core levels, which are typical characteristics of Cu (II) and O(II), respectively, in CuO. The Raman spectra showed peaks at 305, 344, and 642 cm−1 attributed to Raman active (Ag+2Bg) modes for Cu-O stretching. Rutherford backscattering spectrometry (RBS) determined the content of the elements and the changes in the thicknesses of the coatings with the rotational speed (RS) of the spin coater. The elemental content of Cu and O atoms were, respectively, 54 and 46%. The thicknesses were calculated to be 1.406 × 1018 atoms/cm2 (296.3 nm), 1.286 × 1018 atoms/cm2 (271.0 nm), 1.138 × 1018 atoms/cm2 (239.8 nm), and 0.985 × 1015 atoms/cm2 (207.5 nm) at 700, 800, 900 and 1000 rpm, respectively. The optical properties of the CuO nanocoatings were characterized using UV–Vis–NIR and FTIR spectrometers; its vital solar selectivity parameters of solar absorptance (α) and emissivity (ε) were evaluated in the ranges of 0.3–2.5 and 2.5–20 µm wavelengths, respectively. The obtained coatings exhibited solar parameters (α = 0.90, and ε = 0.31) associated with 700 rpm due to an intrinsic and interference-induced absorption as well as higher attenuation of light
    corecore