462,335 research outputs found

    Multi-Photon Interference and Temporal Distinguishability of Photons

    Full text link
    A number of recent interference experiments involving multiple photons are reviewed. These experiments include generalized photon bunching effects, generalized Hong-Ou-Mandel interference effects and multi-photon interferometry for demonstrations of multi-photon de Broglie wavelength. The multi-photon states used in these experiments are from two pairs of photons in parametric down-conversion. We find that the size of the interference effect in these experiments, characterized by the visibility of interference pattern, is governed by the degree of distinguishability among different pairs of photons. Based on this discovery, we generalize the concept of multi-photon temporal distinguishability and relate it to a number of multi-photon interference effects. Finally, we make an attempt to interpret the coherence theory by the multi-photon interference via the concept of temporal distinguishability of photons.Comment: fixed figures 4,5,

    Why T_c is too high when antiferromagnetism is underestimated? --- An understanding based on the phase string effect

    Full text link
    It is natural for a Mott antiferromagnetism in RVB description to become a superconductor in doped metallic regime. But the issue of superconducting transition temperature is highly nontrivial, as the AF fluctuations in the form of RVB pair-breaking are crucial in determining the phase coherence of the superconductivity. Underestimated AF fluctuations in a fermionic RVB state are the essential reason causing an overestimate of T_c in the same system. We point out that by starting with a {\it bosonic} RVB description where both the long-range and short-range AF correlations can be accurately described, the AF fluctuations can effectively reduce T_c to a reasonable value through the phase string effect, by controlling the phase coherence of the superconducting order parameter.Comment: Latex; two figure

    The tensor structure on the representation category of the Wp\mathcal{W}_p triplet algebra

    Full text link
    We study the braided monoidal structure that the fusion product induces on the abelian category Wp\mathcal{W}_p-mod, the category of representations of the triplet WW-algebra Wp\mathcal{W}_p. The Wp\mathcal{W}_p-algebras are a family of vertex operator algebras that form the simplest known examples of symmetry algebras of logarithmic conformal field theories. We formalise the methods for computing fusion products, developed by Nahm, Gaberdiel and Kausch, that are widely used in the physics literature and illustrate a systematic approach to calculating fusion products in non-semi-simple representation categories. We apply these methods to the braided monoidal structure of Wp\mathcal{W}_p-mod, previously constructed by Huang, Lepowsky and Zhang, to prove that this braided monoidal structure is rigid. The rigidity of Wp\mathcal{W}_p-mod allows us to prove explicit formulae for the fusion product on the set of all simple and all projective Wp\mathcal{W}_p-modules, which were first conjectured by Fuchs, Hwang, Semikhatov and Tipunin; and Gaberdiel and Runkel.Comment: 58 pages; edit: added references and revisions according to referee reports. Version to appear on J. Phys.

    Diverse Supernova Sources for the r-Process and Abundances in Metal-Poor Stars

    Get PDF
    The dispersion and mean trends of r-process abundances in metal-poor stars are discussed based on a model of diverse supernova sources for the r-process. This model is unique in that its key parameters are inferred from solar system data independent of stellar observations at low metallicities. It is shown that this model provides a good explanation for the observed dispersion and mean trend of Eu abundances over -3 < [Fe/H] < -1. It is also shown that this model provides a means to discuss r-abundances in general. For example, the Ag abundance in any metal-poor star with observed Eu and Fe abundances can be calculated from the model. This approach is demonstrated with success for two stars and can be further tested by future Ag data. The dispersion and mean trend of Ag abundances in metal-poor stars are also calculated for comparison with future observations.Comment: 4 pages, 2 figures, to appear in ApJL (submitted February 1, 2001
    • …
    corecore