8,908 research outputs found

    The brightest pure-H ultracool white dwarf

    Get PDF
    We report the identification of LSR J0745+2627 in the United Kingdom InfraRed Telescope Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) as a cool white dwarf with kinematics and age compatible with the thick-disk/halo population. LSR J0745+2627 has a high proper motion (890 mas/yr) and a high reduced proper motion value in the J band (H_J=21.87). We show how the infrared-reduced proper motion diagram is useful for selecting a sample of cool white dwarfs with low contamination. LSR J0745+2627 is also detected in the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). We have spectroscopically confirmed this object as a cool white dwarf using X-Shooter on the Very Large Telescope. A detailed analysis of its spectral energy distribution reveals that its atmosphere is compatible with a pure-H composition model with an effective temperature of 3880+-90 K. This object is the brightest pure-H ultracool white dwarf (Teff<4000 K) ever identified. We have constrained the distance (24-45 pc), space velocities and age considering different surface gravities. The results obtained suggest that LSR J0745+2627 belongs to the thick-disk/halo population and is also one of the closest ultracool white dwarfs.Comment: 5 pages, 7 figures, accepted for publication in A&A Letter

    Einstein gravity as a 3D conformally invariant theory

    Get PDF
    We give an alternative description of the physical content of general relativity that does not require a Lorentz invariant spacetime. Instead, we find that gravity admits a dual description in terms of a theory where local size is irrelevant. The dual theory is invariant under foliation preserving 3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume (for the spatially compact case). Locally, this symmetry is identical to that of Horava-Lifshitz gravity in the high energy limit but our theory is equivalent to Einstein gravity. Specifically, we find that the solutions of general relativity, in a gauge where the spatial hypersurfaces have constant mean extrinsic curvature, can be mapped to solutions of a particular gauge fixing of the dual theory. Moreover, this duality is not accidental. We provide a general geometric picture for our procedure that allows us to trade foliation invariance for conformal invariance. The dual theory provides a new proposal for the theory space of quantum gravity.Comment: 27 pages. Published version (minor changes and corrections

    Scalar-Kinetic Branes

    Full text link
    This work tries to find out thick brane solutions in braneworld scenarios described by a real scalar field in the presence of a scalar-kinetic term F(X,ϕ)=XϕmF(X,\phi)=X\phi^m with a single extra dimension, where X=12∇Mϕ∇MϕX=\frac12\nabla_M\phi\nabla^M\phi stands for the standard kinetic term and m=0,1,2⋯m=0,1,2\cdots. We mainly consider bent branes, namely de Sitter and Anti-de Sitter four-dimensional slices. The solutions of a flat brane are obtained when taking the four-dimensional cosmological constant Λ4→0\Lambda_4\rightarrow 0. When the parameter m=0m=0, these solutions turn to those of the standard scenario. The localization and spectrum of graviton on these branes are also analyzed.Comment: 10 pages, no figures, accepted by EP

    Excitons in quasi-one dimensional organics: Strong correlation approximation

    Full text link
    An exciton theory for quasi-one dimensional organic materials is developed in the framework of the Su-Schrieffer-Heeger Hamiltonian augmented by short range extended Hubbard interactions. Within a strong electron-electron correlation approximation, the exciton properties are extensively studied. Using scattering theory, we analytically obtain the exciton energy and wavefunction and derive a criterion for the existence of a BuB_u exciton. We also systematically investigate the effect of impurities on the coherent motion of an exciton. The coherence is measured by a suitably defined electron-hole correlation function. It is shown that, for impurities with an on-site potential, a crossover behavior will occur if the impurity strength is comparable to the bandwidth of the exciton, corresponding to exciton localization. For a charged impurity with a spatially extended potential, in addition to localization the exciton will dissociate into an uncorrelated electron-hole pair when the impurity is sufficiently strong to overcome the Coulomb interaction which binds the electron-hole pair. Interchain coupling effects are also discussed by considering two polymer chains coupled through nearest-neighbor interchain hopping t⊥t_{\perp} and interchain Coulomb interaction V⊥V_{\perp}. Within the tt matrix scattering formalism, for every center-of-mass momentum, we find two poles determined only by V⊥V_{\perp}, which correspond to the interchain excitons. Finally, the exciton state is used to study the charge transfer from a polymer chain to an adjacent dopant molecule.Comment: 24 pages, 23 eps figures, pdf file of the paper availabl

    Scattering in one-dimensional heterostructures described by the Dirac equation

    Full text link
    We consider electronic transport accross one-dimensional heterostructures described by the Dirac equation. We discuss the cases where both the velocity and the mass are position dependent. We show how to generalize the Dirac Hamiltonian in order to obtain a Hermitian problem for spatial dependent velocity. We solve exactly the case where the position dependence of both velocity and mass is linear. In the case of velocity profiles, it is shown that there is no backscattering of Dirac electrons. In the case of the mass profile backscattering exists. In this case, it is shown that the linear mass profile induces less backscattering than the abrupt step-like profile. Our results are a first step to the study of similar problems in graphene

    Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212

    Full text link
    The superconducting gap - an energy scale tied to the superconducting phenomena-opens on the Fermi surface at the superconducting transition temperature (TC) in conventional BCS superconductors. Quite differently, in underdoped high-TC superconducting cuprates, a pseudogap, whose relation to the superconducting gap remains a mystery, develops well above TC. Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above TC is one of the central questions in high-TC research. While some experimental evidence suggests they are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2212 in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap which opens at TC and exhibits a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasiparticles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments. The emerging two-gap phenomenon points to a picture of richer quantum configurations in high temperature superconductors.Comment: 16 pages, 4 figures, authors' version Corrected typos in the abstrac

    Ab-initio prediction of the electronic and optical excitations in polythiophene: isolated chains versus bulk polymer

    Get PDF
    We calculate the electronic and optical excitations of polythiophene using the GW approximation for the electronic self-energy, and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. Two different situations are studied: excitations on isolated chains and excitations on chains in crystalline polythiophene. The dielectric tensor for the crystalline situation is obtained by modeling the polymer chains as polarizable line objects, with a long-wavelength polarizability tensor obtained from the ab-initio polarizability function of the isolated chain. With this model dielectric tensor we construct a screened interaction for the crystalline case, including both intra- and interchain screening. In the crystalline situation both the quasi-particle band gap and the exciton binding energies are drastically reduced in comparison with the isolated chain. However, the optical gap is hardly affected. We expect this result to be relevant for conjugated polymers in general.Comment: 15 pages including 4 figures; to appear in Phys. Rev. B, 6/15/200

    A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes

    Get PDF
    In the present work we originally tested the suitability of corn starch-polycaprolactone (SPCL) scaffolds for pursuing a cartilage tissue engineering approach. Bovine articular chondrocytes were seeded on SPCL scaffolds under dynamic conditions using spinner flasks (total of 4 scaffolds per spinner flask using cell suspensions of 0.5×106 cells/ml) and cultured under orbital agitation for a total of 6 weeks. Poly(glycolic acid) (PGA) non-woven scaffolds and bovine native articular cartilage were used as standard controls for the conducted experiments. PGA is a kind of standard in tissue engineering approaches and it was used as a control in that sense. The tissue engineered constructs were characterized at different time periods by scanning electron microscopy (SEM), hematoxylin-eosin (H&E) and toluidine blue stainings, immunolocalisation of collagen types I and II, and dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) quantification assay. SEM results for SPCL constructs showed that the chondrocytes presented normal morphological features, with extensive cells presence at the surface of the support structures, and penetrating the scaffolds pores. These observations were further corroborated by H&E staining. Toluidine blue and immunohistochemistry exhibited extracellular matrix deposition throughout the 3D structure. Glycosaminoglycans, and collagen types I and II were detected. However, stronger staining for collagen type II was observed when compared to collagen type I. The PGA constructs presented similar features toSPCLat the end of the 6 weeks. PGA constructs exhibited higher amounts of matrix glycosaminoglycans when compared to the SPCL scaffolds. However, we also observed a lack of tissue in the central area of the PGA scaffolds. Reasons for these occurrences may include inefficient cells penetration, necrosis due to high cell densities, or necrosis related with acidic by-products degradation. Such situation was not detected in the SPCL scaffolds, indicating the much better biocompatibility of the starch based scaffolds

    Angle-resolved photoemission study and first principles calculation of the electronic structure of GaTe

    Full text link
    The electronic band structure of GaTe has been calculated by numerical atomic orbitals density-functional theory, in the local density approximation. In addition, the valence-band dispersion along various directions of the GaTe Brillouin zone has been determined experimentally by angle-resolved photoelectron spectroscopy. Along these directions, the calculated valence-band structure is in good concordance with the valence-band dispersion obtained by these measurements. It has been established that GaTe is a direct-gap semiconductor with the band gap located at the Z point, that is, at Brillouin zone border in the direction perpendicular to the layers. The valence-band maximum shows a marked \textit{p}-like behavior, with a pronounced anion contribution. The conduction band minimum arises from states with a comparable \textit{s}- \textit{p}-cation and \textit{p}-anion orbital contribution. Spin-orbit interaction appears to specially alter dispersion and binding energy of states of the topmost valence bands lying at Γ\Gamma. By spin-orbit, it is favored hybridization of the topmost \textit{p}z_z-valence band with deeper and flatter \textit{px_x}-\textit{py_y} bands and the valence-band minimum at Γ\Gamma is raised towards the Fermi level since it appears to be determined by the shifted up \textit{px_x}-\textit{py_y} bands.Comment: 7 text pages, 6 eps figures, submitted to PR
    • …
    corecore