28 research outputs found

    Exawatt-Zettawatt Pulse Generation and Applications

    Full text link
    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could be used at large-scale facilities such as the National Ignition Facility (NIF) or the Laser Megajoule (LMJ) and open the way to zettawatt level pulses. The beam will be focused to a wavelength spot size with a f#1. The very small beam size, i.e. few centimeters, along with the low laser repetition rate laser system will make possible the use of inexpensive, precision, disposable optics. The resulting intensity will approach the Schwinger value, thus opening up new possibilities in fundamental physics.Comment: 13 pages, 4 figure

    Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    Get PDF
    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.close0

    An ultra-high gain and efficient amplifier based on Raman amplification in plasma

    Get PDF
    Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr(-1), and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm(-1), exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr(-1) directly backscattered from noise, corresponding to approximate to 10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%

    Deep saturation of a Cerenkov wakefield amplified by an active medium

    No full text
    A trigger bunch of electrons traveling inside or in the vicinity of a dielectric medium generates a Cerenkov wake. If the dielectric medium is active, a small fraction of the spectrum of the wake is amplified and far behind the trigger bunch where the active medium is fully depleted, the amplitude and the phase of the wake are virtually constant. In this range, a second bunch of electrons trailing behind the trigger bunch can be accelerated. For optimal operation, the trigger bunch should be density modulated at the resonant frequency of the medium. However, we demonstrate that even if the bunch is uniform along many wavelengths we may still take advantage of the saturation characteristics to obtain conditions adequate for acceleration. Further we demonstrate that for large enough number of electrons it is possible to have a coherent amplified wake after a saturation length which is determined analytically and tested numerically. In addition, we show that almost 100% of the stored energy in the active medium can be transferred to the acceleration of the trailing bunch electrons. The relatively large energy spread due to the beam loading is well suited to a medical accelerator. When the beam loading is weak, the gradient is virtually constant but the acceleration efficiency drops to about 2% for typical parameters
    corecore