13 research outputs found

    Role of Calcitonin Gene-Related Peptide in Bone Repair after Cyclic Fatigue Loading

    Get PDF
    Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo in the skeletal responses to bone loading, particularly fatigue loading.We used the rat ulna end-loading model to induce fatigue damage in the ulna unilaterally during cyclic loading. We postulated that CGRP would influence skeletal responses to cyclic fatigue loading. Rats were fatigue loaded and groups of rats were infused systemically with 0.9% saline, CGRP, or the receptor antagonist, CGRP(8-37), for a 10 day study period. Ten days after fatigue loading, bone and serum CGRP concentrations, serum tartrate-resistant acid phosphatase 5b (TRAP5b) concentrations, and fatigue-induced skeletal responses were quantified. We found that cyclic fatigue loading led to increased CGRP concentrations in both loaded and contralateral ulnae. Administration of CGRP(8-37) was associated with increased targeted remodeling in the fatigue-loaded ulna. Administration of CGRP or CGRP(8-37) both increased reparative bone formation over the study period. Plasma concentration of TRAP5b was not significantly influenced by either CGRP or CGRP(8-37) administration.CGRP signaling modulates targeted remodeling of microdamage and reparative new bone formation after bone fatigue, and may be part of a neuronal signaling pathway which has regulatory effects on load-induced repair responses within the skeleton

    Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes

    Get PDF
    Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs

    Complementary approaches demonstrate that cellular aromatization in the bank vole testis is related to photoperiod

    No full text
    A growing body of evidence indicates that germ cells, at least in several mammalian species, are responsible for estrogen formation since they possess active aromatase. In seasonally breeding rodent, the bank vole, the length of photoperiod seems to be the primary environmental factor regulating annual changes in the reproductive activity. However, in this species gonadal steroidogenesis is still not well understood, neither the site of aromatization in testicular cells. In the bank vole testis, aromatase visualized by immunohistochemistry was found in Leydig cells, Sertoli cells, and germ cells: especially in spermatocytes and spermatids. Moreover, in the immuno-electron microscopic study, gold particles indicating aromatase were observed over the cytoplasm of elongated spermatids. The presence of aromatase and the activity of this enzyme were found in microsomal preparations of the whole testes and those of seminiferous tubules. This was measured by means of Western blot and the biochemical assay with tritiated androstenedione, respectively. Additionally, using radioimmunological assays testosterone and estradiol concentrations in homogenates were detected. All the studied parameters revealed close correlation with the length of photoperiod being evidently higher in animals kept in the long day conditions when compared with those from short light cycles

    Quantitative Analysis of the Membrana Granulosa in Developing and Ovulatory Follicles

    No full text
    corecore