50 research outputs found
High potency silencing by single-stranded boranophosphate siRNA
In RNA interference (RNAi), double-stranded short interfering RNA (ds-siRNA) inhibits expression from complementary mRNAs. Recently, it was demonstrated that short, single-stranded antisense RNA (ss-siRNA) can also induce RNAi. While ss-siRNA may offer several advantages in both clinical and research applications, its overall poor activity compared with ds-siRNA has prevented its widespread use. In contrast to the poor gene silencing activity of native ss-siRNA, we found that the silencing activity of boranophosphate-modified ss-siRNA is comparable with that of unmodified ds-siRNA. Boranophosphate ss-siRNA has excellent maximum silencing activity and is highly effective at low concentrations. The silencing activity of boranophosphate ss-siRNA is also durable, with significant silencing up to 1 week after transfection. Thus, we have demonstrated that boranophosphate-modified ss-siRNA can silence gene expression as well as native ds-siRNA, suggesting that boranophosphate-modified ss-siRNAs should be investigated as a potential new class of therapeutic agents
Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation
Microstructure and deformation behavior of the commercial aluminum-based Al7.5%Zn–2.7%Mg–2.3%Cu–0.15%Zr alloy subjected to high pressure torsion (HPT) were studied in the present work. A small grain size less than 100 nm, high level of internal stresses and presence of second phase nanoparticles were revealed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The nanostructured alloy processed by HPT exhibits tensile strength of 800 MPa and ductility of 20% at optimal temperature-strain rate conditions. Unusual influence of a short pre-annealing on tensile strength and ductility of as-processed alloy is discussed.<br /