13 research outputs found

    Transdermal delivery of diclofenac sodium through rat skin from various formulations

    No full text
    The aim of this study was to evaluate and compare the in vitro and in vivo transdermal potential of w/o microemulsion (M) and gel (G) bases for diclofenac sodium (DS). The effect of dimethyl sulfoxide (DMSO) as a penetration enhancer was also examined when it was added to the M formulation. To study the in vitro potential of these formulations, permeation studies were performed with Franz diffusion cells using excised dorsal rat skin. To investigate their in vivo performance, a carrageenan-induced rat paw edema model was used. The commercial formulation of DS (C) was used as a reference formulation. The results of the in vitro permeation studies and the paw edema tests were analyzed by repeated-measures analysis of variance. The in vitro permeation studies found that M was superior to G and C and that adding DMSO to M increased the permeation rate. The permeability coefficients (Kp) of DS from M and M+DMSO were higher (Kp=4.9×10−3±3.6×10−4 cm/h and 5.3×10−3±1.2×10−3 cm/h, respectively) than the Kp of DS from C (Kp=2.7×10−3±7.3×10−4 cm/h) and G (Kp=4.5×10−3±4.5×10−5 cm/h). In the paw edema test, M showed the best permeation and effectiveness, and M+DMSO had nearly the same effect as M. The in vitro and in vivo studies showed that M could be a new, alternative dosage form for effective therapy

    Gender differences in lipid goal attainment among Chinese patients with coronary heart disease: insights from the DYSlipidemia International Study of China

    No full text

    Ramie fibre: part I. Chemical composition and chemical properties. A critical review of recent developments

    No full text
    corecore