19 research outputs found

    The Relativistic Levinson Theorem in Two Dimensions

    Full text link
    In the light of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation in two dimensions is established as a relation between the total number njn_{j} of the bound states and the sum of the phase shifts ηj(±M)\eta_{j}(\pm M) of the scattering states with the angular momentum jj: ηj(M)+ηj(−M)                                   ˜                                                          \eta_{j}(M)+\eta_{j}(-M)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    ={(nj+1)Ï€when a half bound state occurs at E=M  and  j=3/2 or −1/2(nj+1)Ï€when a half bound state occurs at E=−M  and  j=1/2 or −3/2njπ the rest cases.~~~=\left\{\begin{array}{ll} (n_{j}+1)\pi &{\rm when~a~half~bound~state~occurs~at}~E=M ~~{\rm and}~~ j=3/2~{\rm or}~-1/2\\ (n_{j}+1)\pi &{\rm when~a~half~bound~state~occurs~at}~E=-M~~{\rm and}~~ j=1/2~{\rm or}~-3/2\\ n_{j}\pi~&{\rm the~rest~cases} . \end{array} \right. \noindent The critical case, where the Dirac equation has a finite zero-momentum solution, is analyzed in detail. A zero-momentum solution is called a half bound state if its wave function is finite but does not decay fast enough at infinity to be square integrable.Comment: Latex 14 pages, no figure, submitted to Phys.Rev.A; Email: [email protected], [email protected]

    Levinson's Theorem for the Klein-Gordon Equation in Two Dimensions

    Full text link
    The two-dimensional Levinson theorem for the Klein-Gordon equation with a cylindrically symmetric potential V(r)V(r) is established. It is shown that Nmπ=π(nm+−nm−)=[δm(M)+β1]−[δm(−M)+β2]N_{m}\pi=\pi (n_{m}^{+}-n_{m}^{-})= [\delta_{m}(M)+\beta_{1}]-[\delta_{m}(-M)+\beta_{2}], where NmN_{m} denotes the difference between the number of bound states of the particle nm+n_{m}^{+} and the ones of antiparticle nm−n_{m}^{-} with a fixed angular momentum mm, and the δm\delta_{m} is named phase shifts. The constants β1\beta_{1} and β2\beta_{2} are introduced to symbol the critical cases where the half bound states occur at E=±ME=\pm M.Comment: Revtex file 14 pages, submitted to Phys. Rev.

    Levinson's theorem for the Schr\"{o}dinger equation in two dimensions

    Full text link
    Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically symmetric potential in two dimensions is re-established by the Sturm-Liouville theorem. The critical case, where the Schr\"{o}dinger equation has a finite zero-energy solution, is analyzed in detail. It is shown that, in comparison with Levinson's theorem in non-critical case, the half bound state for PP wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of PP wave at zero energy to increase an additional Ï€\pi.Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email: [email protected], [email protected]

    Combination of Rough and Fuzzy Sets Based on α-Level Sets

    No full text
    A fuzzy set can be represented by a family of crisp sets using its α-level sets, whereas a rough set can be represented by three crisp sets. Based on such representations, this paper examines some fundamental issues involved in the combination of rough-set and fuzzy-set models. The rough-fuzzy-set and fuzzy-rough-set models are analyzed, with emphasis on their structures in terms of crisp sets. A rough fuzzy set is a pair of fuzzy sets resulting from the approximation of a fuzzy set in a crisp approximation space, and a fuzzy rough set is a pair of fuzzy sets resulting from the approximation of a crisp set in a fuzzy approximation space. The approximation of a fuzzy set in a fuzzy approximation space leads to a more general framework. The results may be interpreted in three different ways
    corecore