111 research outputs found

    Influence of dispersing additive on asphaltenes aggregation in model system

    Get PDF
    The work is devoted to investigation of the dispersing additive influence on asphaltenes aggregation in the asphaltenes-toluene-heptane model system by photon correlation spectroscopy method. The experimental relationship between the onset point of asphaltenes and their concentration in toluene has been obtained. The influence of model system composition on asphaltenes aggregation has been researched. The estimation of aggregative and sedimentation stability of asphaltenes in model system and system with addition of dispersing additive has been given

    The Disk Wind in the Young Binaries and the Origin of the Cyclic Activity of Young Stars

    Full text link
    We present results of numerical modeling of the cyclic brightness modulation in the young binary systems with the eccentric orbits and low-mass secondary components. Brightness variations of the primary is due to the periodical extinction variations on the line-of-sight caused by the disk wind of the secondary and a common envelope it produces. A matter distribution in the envelope has been calculated in the ballistic approach. Calculations showed that for the young binaries with the elliptic orbits parameters of the photometric minima (their depth, duration and the shape of light curves) depend not only on the disk wind parameters and an inclination of the binary orbit to the line-of-sight but also on the longitude of the periastron. A modulation of the scattered radiation of the common envelope with a phase of the orbital period has been investigated in the single scattering approach. It is shown that an amplitude of the modulation is maximal when the system is seen edge-on and has also a non-zero value in the binaries observed pole-on. Possible applications of the theory to the young stellar objects are discussed. In particular, an attention is payed to a resemblance of the light curves in some models with light curves of the objects suspected as candidates to FUORs.Comment: 18 pages, 9 figures, accepted by Astronomy Letter

    The GRANDMA network in preparation for the fourth gravitational-wave observing run

    Get PDF
    GRANDMA is a world-wide collaboration with the primary scientific goal ofstudying gravitational-wave sources, discovering their electromagneticcounterparts and characterizing their emission. GRANDMA involves astronomers,astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now atruly global network of telescopes, with (so far) 30 telescopes in bothhemispheres. It incorporates a citizen science programme (Kilonova-Catcher)which constitutes an opportunity to spread the interest in time-domainastronomy. The telescope network is an heterogeneous set of already-existingobserving facilities that operate coordinated as a single observatory. Withinthe network there are wide-field imagers that can observe large areas of thesky to search for optical counterparts, narrow-field instruments that dotargeted searches within a predefined list of host-galaxy candidates, andlarger telescopes that are devoted to characterization and follow-up of theidentified counterparts. Here we present an overview of GRANDMA after the thirdobserving run of the LIGO/VIRGO gravitational-wave observatories in 201920202019-2020and its ongoing preparation for the forthcoming fourth observational campaign(O4). Additionally, we review the potential of GRANDMA for the discovery andfollow-up of other types of astronomical transients.<br

    Abstracts of presentations on selected topics at the XIVth international plant protection congress (IPPC) July 25-30, 1999

    Get PDF

    Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022

    Full text link
    We present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of z=0.82±0.09z=0.82\pm0.09, its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy

    GRANDMA and HXMT Observations of GRB 221009A -- the Standard-Luminosity Afterglow of a Hyper-Luminous Gamma-Ray Burst

    Full text link
    GRB 221009A is the brightest Gamma-Ray Burst (GRB) detected in more than 50 years of study. In this paper, we present observations in the X-ray and optical domains after the GRB obtained by the GRANDMA Collaboration (which includes observations from more than 30 professional and amateur telescopes) and the Insight-HXMT Collaboration. We study the optical afterglow with empirical fitting from GRANDMA+HXMT data, augmented with data from the literature up to 60 days. We then model numerically, using a Bayesian approach, the GRANDMA and HXMT-LE afterglow observations, that we augment with Swift-XRT and additional optical/NIR observations reported in the literature. We find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky-Way dust column combined with moderate low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT dataset, we find that the simplest model, where the observed afterglow is produced by synchrotron radiation at the forward external shock during the deceleration of a top-hat relativistic jet by a uniform medium, fits the multi-wavelength observations only moderately well, with a tension between the observed temporal and spectral evolution. This tension is confirmed when using the extended dataset. We find that the consideration of a jet structure (Gaussian or power-law), the inclusion of synchrotron self-Compton emission, or the presence of an underlying supernova do not improve the predictions, showing that the modelling of GRB22109A will require going beyond the most standard GRB afterglow model. Placed in the global context of GRB optical afterglows, we find the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the global known sample despite its extreme energetics and the peculiar afterglow evolution.Comment: Accepted to ApJL for the special issue, 37 pages, 23 pages main text, 6 tables, 13 figure
    corecore