9,965 research outputs found
Continuous vortex pumping into a spinor condensate with magnetic fields
We study the mechanisms and the limits of pumping vorticity into a spinor
condensate through manipulations of magnetic (B-) fields. We discover a
fundamental connection between the geometrical properties of the magnetic
fields and the quantized circulation of magnetically trapped atoms, a result
which generalizes several recent experimental and theoretical studies. The
optimal procedures are devised that are capable of continuously increasing or
decreasing a condensate's vorticity by repeating certain two step B-field
manipulation protocols. We carry out detailed numerical simulations that
support the claim that our protocols are highly efficient, stable, and robust
against small imperfections of all types. Our protocols can be implemented
experimentally within current technologies.Comment: 9 pages, 6 figure
Exact solution for long-term size exclusion suspension-colloidal transport in porous media
Long-term deep bed filtration in porous media with size exclusion particle capture mechanism is studied. For monodispersed suspension and transport in porous media with distributed pore sizes, the microstochastic model allows for upscaling and the exact solution is derived for the obtained macroscale equation system. Results show that transient pore size distribution and nonlinear relation between the filtration coefficient and captured particle concentration during suspension filtration and retention are the main features of long-term deep bed filtration, which generalises the classical deep bed filtration model and its latter modifications. Furthermore, the exact solution demonstrates earlier breakthrough and lower breakthrough concentration for larger particles. Among all the pores with different sizes, the ones with intermediate sizes (between the minimum pore size and the particle size) vanish first. Total concentration of all the pores smaller than the particles turns to zero asymptotically when time tends to infinity, which corresponds to complete plugging of smaller pores.Z. You, P. Bedrikovetsky and L. Kuzmin
Observation of momentum-confined in-gap impurity state in BaKFeAs: evidence for anti-phase pairing
We report the observation by angle-resolved photoemission spectroscopy of an
impurity state located inside the superconducting gap of
BaKFeAs and vanishing above the superconducting
critical temperature, for which the spectral weight is confined in momentum
space near the Fermi wave vector positions. We demonstrate, supported by
theoretical simulations, that this in-gap state originates from weak
non-magnetic scattering between bands with opposite sign of the superconducting
gap phase. This weak scattering, likely due to off-plane Ba/K disorders, occurs
mostly among neighboring Fermi surfaces, suggesting that the superconducting
gap phase changes sign within holelike (and electronlike) bands. Our results
impose severe restrictions on the models promoted to explain high-temperature
superconductivity in these materials.Comment: 8 pages, 5 figures. Accepted for publication in Physical Review
Resonant peak splitting for ballistic conductance in magnetic superlattices
We investigate theoretically the resonant splitting of ballistic conductance
peaks in magnetic superlattices. It is found that, for magnetic superlattices
with periodically arranged identical magnetic-barriers, there exists a
general -fold resonant peak splitting rule for ballistic conductance,
which is the analogy of the -fold resonant splitting for transmission in
-barrier electric superlattices (R. Tsu and L. Esaki, Appl. Phys. Lett. {\bf
22}, 562 (1973)).Comment: 9 pages, 3 figures, latex forma
Does the Iron K Line of Active Galactic Nuclei Arise from the Cerenkov Line-like Radiation?
When thermal relativistic electrons with isotropic distribution of velocities
move in a gas region, or impinge upon the surface of a cloud that consists of a
dense gas or doped dusts, the Cerenkov effect produces peculiar atomic or ionic
emission lines -- the Cerenkov line-like radiation. This newly recognized
emission mechanism may find wide applications in high-energy astrophysics. In
this paper, we tentatively adopt this new line emission mechanism to discuss
the origin of iron K feature of AGNs. Motivation of this research is
to attempt a solution to a problem encountered by the ``disk-fluorescence
line'' model, i.e. the lack of temporal response of the observed iron
K line flux to the changes of the X-ray continuum flux. If the
Cerenkov line emission is indeed responsible significantly for the iron
K feature, the conventional scenario around the central supermassive
black holes of AGNs would need to be modified to accommodate more energetic,
more violent and much denser environments than previously thought.Comment: 22 pages, 4 figures, 1 table. ApJ in press (December
Soft Mode Dynamics Above and Below the Burns Temperature in the Relaxor Pb(Mg_1/3Nb_2/3)O_3
We report neutron inelastic scattering measurements of the lowest-energy
transverse optic (TO) phonon branch in the relaxor Pb(Mg_1/3Nb_2/3)O_3 from 400
to 1100 K. Far above the Burns temperature T_d ~ 620 K we observe well-defined
propagating TO modes at all wave vectors q, and a zone center TO mode that
softens in a manner consistent with that of a ferroelectric soft mode. Below
T_d the zone center TO mode is overdamped. This damping extends up to, but not
above, the waterfall wave vector q_wf, which is a measure of the average size
of the PNR.Comment: 4 pages, 4 figures; modified discussion of Fig. 3, shortened
captions, added reference, corrected typos, accepted by Phys. Rev. Let
Exact Solution for Long-Term Size Exclusion Suspension-Colloidal Transport in Porous Media
Long-term deep bed filtration in porous media with size exclusion particle capture mechanism is studied. For monodispersed suspension and transport in porous media with distributed pore sizes, the microstochastic model allows for upscaling and the exact solution is derived for the obtained macroscale equation system. Results show that transient pore size distribution and nonlinear relation between the filtration coefficient and captured particle concentration during suspension filtration and retention are the main features of long-term deep bed filtration, which generalises the classical deep bed filtration model and its latter modifications. Furthermore, the exact solution demonstrates earlier breakthrough and lower breakthrough concentration for larger particles. Among all the pores with different sizes, the ones with intermediate sizes (between the minimum pore size and the particle size) vanish first. Total concentration of all the pores smaller than the particles turns to zero asymptotically when time tends to infinity, which corresponds to complete plugging of smaller pores
Detecting Sarcasm in Multimodal Social Platforms
Sarcasm is a peculiar form of sentiment expression, where the surface
sentiment differs from the implied sentiment. The detection of sarcasm in
social media platforms has been applied in the past mainly to textual
utterances where lexical indicators (such as interjections and intensifiers),
linguistic markers, and contextual information (such as user profiles, or past
conversations) were used to detect the sarcastic tone. However, modern social
media platforms allow to create multimodal messages where audiovisual content
is integrated with the text, making the analysis of a mode in isolation
partial. In our work, we first study the relationship between the textual and
visual aspects in multimodal posts from three major social media platforms,
i.e., Instagram, Tumblr and Twitter, and we run a crowdsourcing task to
quantify the extent to which images are perceived as necessary by human
annotators. Moreover, we propose two different computational frameworks to
detect sarcasm that integrate the textual and visual modalities. The first
approach exploits visual semantics trained on an external dataset, and
concatenates the semantics features with state-of-the-art textual features. The
second method adapts a visual neural network initialized with parameters
trained on ImageNet to multimodal sarcastic posts. Results show the positive
effect of combining modalities for the detection of sarcasm across platforms
and methods.Comment: 10 pages, 3 figures, final version published in the Proceedings of
ACM Multimedia 201
- …