11 research outputs found

    Isotropic Conductivity of Two-Dimensional Three-Component Symmetric Composites

    Full text link
    The effective dc-conductivity problem of isotropic, two-dimensional (2D), three-component, symmetric, regular composites is considered. A simple cubic equation with one free parameter for σe(σ1,σ2,σ3)\sigma_{e}(\sigma_1,\sigma_2,\sigma_3) is suggested whose solutions automatically have all the exactly known properties of that function. Numerical calculations on four different symmetric, isotropic, 2D, three-component, regular structures show a non-universal behavior of σe(σ1,σ2,σ3)\sigma_{e}(\sigma_1,\sigma_2,\sigma_3) with an essential dependence on micro-structural details, in contrast with the analogous two-component problem. The applicability of the cubic equation to these structures is discussed. An extension of that equation to the description of other types of 2D three-component structures is suggested, including the case of random structures. Pacs: 72.15.Eb, 72.80.Tm, 61.50.AhComment: 8 pages (two columns), 8 figures. J. Phys. A - submitte

    Statistical analysis of the results of humidity-temperature tests of glass reinforced plastics (GRP)

    No full text

    Effect of moisture on the time dependence of the strength of glass-textolites

    No full text

    Antiproton-proton scattering experiments with polarization.

    No full text
    High Energy Physics Esperiment (hep-ex/0505054). The document describes the physics case of the PAX experiment using polarized antiprotons, which has recently been proposed for the new Facility for Antiprotons and Ions Research (FAIR) at GSI--Darmstadt. Polarized antiprotons provide access to a wealth of single-- and double--spin observables, thereby opening a new window to physics uniquely accessible at the HESR. The polarized antiprotons would be most efficiently produced by spin--filtering in a dedicated Antiproton Polarizer Ring (APR) using an internal polarized hydrogen gas target. In the proposed collider scenario of the PAX experiment, polarized protons stored in a COSY--like Cooler Storage Ring (CSR) up to momenta of 3.5 GeV/c are bombarded head--on with 15 GeV/c polarized antiprotons stored in the HESR. This asymmetric double--polarized antiproton--proton collider is ideally suited to map, e.g., the transversity distribution in the proton. The proposed detector consists of a large--angle apparatus optimized for the detection of Drell--Yan electron pair

    "Measurement of the spin-dependence of p-pbar interaction at AD-ring”

    No full text
    Letter of Intent to the CERN SPS Comitee. An internal polarized hydrogen storage cell gas target is proposed for the AD--ring to determine for the first time the two total spin--dependent cross sections σ1\sigma_1 and σ2\sigma_2 at antiproton beam energies in the range from 50 to 200 MeV. The data will allow the definition of the optimum working parameters of a dedicated Antiproton Polarizer Ring (APR), which has recently been proposed by the PAX collaboration for the new Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany. The availability of an intense beam of polarized antiprotons will provide access to a wealth of single-- and double--spin observables, thereby opening a new window to QCD transverse spin physics. The physics program proposed by the PAX collaboration includes a first measurement of the transversity distribution of the valence quarks in the proton, a test of the predicted opposite sign of the Sivers--function, related to the quark distribution inside a transversely polarized nucleon, in Drell--Yan (DY) as compared to semi--inclusive Deep Inelastic Scattering, and a first measurement of the moduli and the relative phase of the time--like electric and magnetic form factors GE,MG_{E,M} of the proton

    Antiproton-proton scattering experiment with polarization (update)

    No full text
    Upgrading to the document High Energy Physics Esperiment (hep-ex/0505054). The document describes the physics case of the PAX experiment using polarized antiprotons, which has recently been proposed for the new Facility for Antiprotons and Ions Research (FAIR) at GSI--Darmstadt. Polarized antiprotons provide access to a wealth of single-- and double--spin observables, thereby opening a new window to physics uniquely accessible at the HESR. The polarized antiprotons would be most efficiently produced by spin--filtering in a dedicated Antiproton Polarizer Ring (APR) using an internal polarized hydrogen gas target. In the proposed collider scenario of the PAX experiment, polarized protons stored in a COSY--like Cooler Storage Ring (CSR) up to momenta of 3.5 GeV/c are bombarded head--on with 15 GeV/c polarized antiprotons stored in the HESR. This asymmetric double--polarized antiproton--proton collider is ideally suited to map, e.g., the transversity distribution in the proton. The proposed detector consists of a large--angle apparatus optimized for the detection of Drell--Yan electron pair

    Status and initial physics performance studies of the MPD experiment at NICA

    No full text
    The Nuclotron-based Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations
    corecore