88 research outputs found
Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure
Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2. © 2013 Falcon et al
High-Resolution, In Vivo Magnetic Resonance Imaging of Drosophila at 18.8 Tesla
High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays
Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi)
BACKGROUND: RNA interference (RNAi) is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly) gene (corresponding to a putative gene CG5652/GM06434), that we named beltless based on an embryonic loss-of-function phenotype. RESULTS: Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp) beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless) of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1)RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1)RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. CONCLUSIONS: We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF) NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should elucidate the role and mechanism of action of beltless during Drosophila development and in adults, including in the adult nervous system
A Method to Find Longevity-Selected Positions in the Mammalian Proteome
Evolutionary theory suggests that the force of natural selection decreases with age. To explore the extent to which this prediction directly affects protein structure and function, we used multiple regression to find longevity-selected positions, defined as the columns of a sequence alignment conserved in long-lived but not short-lived mammal species. We analyzed 7,590 orthologous protein families in 33 mammalian species, accounting for body mass, phylogeny, and species-specific mutation rate. Overall, we found that the number of longevity-selected positions in the mammalian proteome is much higher than would be expected by chance. Further, these positions are enriched in domains of several proteins that interact with one another in inflammation and other aging-related processes, as well as in organismal development. We present as an example the kinase domain of anti-Müllerian hormone type-2 receptor (AMHR2). AMHR2 inhibits ovarian follicle recruitment and growth, and a homology model of the kinase domain shows that its longevity-selected positions cluster near a SNP associated with delayed human menopause. Distinct from its canonical role in development, this region of AMHR2 may function to regulate the protein’s activity in a lifespan-specific manner
Melatonin Promotes Oligodendroglial Maturation of Injured White Matter in Neonatal Rats
OBJECTIVE:To investigate the effects of melatonin treatment in a rat model of white matter damage (WMD) in the developing brain. Additionally, we aim to delineate the cellular mechanisms of melatonin effect on the oligodendroglial cell lineage. METHODS:A unilateral ligation of the uterine artery in pregnant rat at the embryonic day 17 induces fetal hypoxia and subsequent growth restriction (GR) in neonatal pups. GR and control pups received a daily intra-peritoneal injection of melatonin from birth to post-natal day (P) 3. RESULTS:Melatonin administration was associated with a dramatic decrease in microglial activation and astroglial reaction compared to untreated GR pups. At P14, melatonin prevented white matter myelination defects with an increased number of mature oligodendrocytes (APC-immunoreactive) in treated GR pups. Conversely, melatonin was not found to be associated with an increased density of total oligodendrocytes (Olig2-immunoreactive), suggesting that melatonin is able to promote oligodendrocyte maturation but not proliferation. These effects appear to be melatonin-receptor dependent and were reproduced in vitro. INTERPRETATION:These data suggest that melatonin has a strong protective effect on developing damaged white matter through decreased microglial activation and oligodendroglial maturation leading to a normalization of the myelination process. Consequently, melatonin should be a considered as an effective neuroprotective candidate not only in perinatal brain damage but also in inflammatory and demyelinating diseases observed in adults
Evaluation of Measles Outbreak During 2010/2011 in Skopje, Macedonia
Background Due to low rates of vaccination coverage, in mostly rural in Skopje and as a result of military conflict in 2001, lead to spillover of the measles from neighboring countries, where outbreak of measles was already declared.
Methods and materials: Measles reporting is mandatory in Macedonia. Cases analyzed had to meet the national case definition. Case-series investigation were conducted, surveys of rates of vaccination coverage.
Results From 07.09.2010 to 22.07.2011, we have registered 596 cases of measles. Of these 596, twenty five case after getting a negative result from laboratory testing were discarded, so the number of cases of measles in the area of Skopje was 572 (Mb = 97.0/100.000). The first case was during a 13 months of age unvaccinated child. Out of 572 cases of measles 235 (41.0%) were hospitalized, mostly with severe clinical symptoms. According to the patients vaccination status the conclusion was that: 517 (90.4%) persons were vaccinated, of which 59 not subject to the vaccination, 19 (3.3%) persons no data, 36 (6.3%) persons were vaccinated, of which a portion of MMR are 30 and 6 with two doses. During the outbreak, laboratory confirmed 84 cases out of 103 taken materials, were positive.
Conclusions The high rate of vaccine coverage in most municipalities in Skopje, unvaccinated children with a first dose and absence of the second dose in the first grade in elementary school, mostly in rural areas affected by the military conflict in 2001, were the cause of measles in epidemic form
Investigation the influence of dietary fiber on the rheological properties of alginate beads
Abstract. During the current investigation experiments for the preparation of alginate beads with aqueous solutions of sodium alginate, calcium lactate or
calcium dichloride and dietary fiber in different concentrations: inulin with varying degrees of polymerization, wheat bran and amidated apple pectin were
carried out. The sodium alginate solutions were at constant concentration 3%, while calcium salts in 7% were applied for bead formation. It was proven that the
rupture force of alginate beads was always higher than the pure model system regardless of the chemical structure of dietary fibers used. In the result of the
carried research the dependence at a certain concentration was established at which the rupture force and deformation of the beads increased gradually
- …