9,175 research outputs found

    Evaluating statistical methods used to estimate the number of postsynaptic receptors.

    Get PDF
    Calcium levels in spines play a significant role in determining the sign and magnitude of synaptic plasticity. The magnitude of calcium influx into spines is highly dependent on influx through N-methyl D-aspartate (NMDA) receptors, and therefore depends on the number of postsynaptic NMDA receptors in each spine. We have calculated previously how the number of postsynaptic NMDA receptors determines the mean and variance of calcium transients in the postsynaptic density, and how this alters the shape of plasticity curves. However, the number of postsynaptic NMDA receptors in the postsynaptic density is not well known. Anatomical methods for estimating the number of NMDA receptors produce estimates that are very different than those produced by physiological techniques. The physiological techniques are based on the statistics of synaptic transmission and it is difficult to experimentally estimate their precision. In this paper we use stochastic simulations in order to test the validity of a physiological estimation technique based on failure analysis. We find that the method is likely to underestimate the number of postsynaptic NMDA receptors, explain the source of the error, and re-derive a more precise estimation technique. We also show that the original failure analysis as well as our improved formulas are not robust to small estimation errors in key parameters

    Effects of out-of-plane disorder on the nodal quasiparticle and superconducting gap in single-layer Bi2_2Sr1.6Ln0.4_{1.6}Ln_{0.4}CuO6+δ_{6+\delta} (LnLn = La, Nd, Gd)

    Full text link
    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi2_2Sr1.6_{1.6}LnLn0.4_{0.4}CuO6+δ_{6+\delta} (LnLn = La, Nd, Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi surface shape and band dispersions are not affected, the quasi-particle width increases, the anti-nodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the anti-nodal gap and the depression of the superconducting gap in the nodal region

    Bridging the gap between stellar-mass black holes and ultraluminous X-ray sources

    Full text link
    The X-ray spectral and timing properties of ultraluminous X-ray sources (ULXs) have many similarities with the very high state of stellar-mass black holes (power-law dominated, at accretion rates greater than the Eddington rate). On the other hand, their cool disk components, large characteristic inner-disk radii and low characteristic timescales have been interpreted as evidence of black hole masses ~ 1000 Msun (intermediate-mass black holes). Here we re-examine the physical interpretation of the cool disk model, in the context of accretion states of stellar-mass black holes. In particular, XTE J1550-564 can be considered the missing link between ULXs and stellar-mass black holes, because it exhibits a high-accretion-rate, low-disk-temperature state (ultraluminous branch). On the ultraluminous branch, the accretion rate is positively correlated with the disk truncation radius and the bolometric disk luminosity, while it is anti-correlated with the peak temperature and the frequency of quasi-periodic-oscillations. Two prototypical ULXs (NGC1313 X-1 and X-2) also seem to move along that branch. We use a phenomenological model to show how the different range of spectral and timing parameters found in the two classes of accreting black holes depends on both their masses and accretion rates. We suggest that ULXs are consistent with black hole masses ~ 50-100 Msun, moderately inefficiently accreting at ~20 times Eddington.Comment: 11 pages, accepted for publication in Astrophysics and Space Science. Based on work presented at the Fifth Stromlo Symposium, Australian National University, Dec 200

    Doping evolution of the electronic structure in the single-layer cuprates Bi2_2Sr2−x_{2-x}Lax_xCuO6+δ_{6+\delta}: Comparison with other single-layer cuprates

    Full text link
    We have performed angle-resolved photoemission and core-level x-ray photoemission studies of the single-layer cuprate Bi2_2Sr2−x_{2-x}Lax_xCuO6+δ_{6+\delta} (Bi2201) and revealed the doping evolution of the electronic structure from the lightly-doped to optimally-doped regions. We have observed the formation of the dispersive quasi-particle band, evolution of the Fermi ``arc'' into the Fermi surface and the shift of the chemical potential with hole doping as in other cuprates. The doping evolution in Bi2201 is similar to that in Ca2−x_{2-x}Nax_{x}CuO2_{2}Cl2_2 (Na-CCOC), where a rapid chemical potential shift toward the lower Hubbard band of the parent insulator has been observed, but is quite different from that in La2−x_{2-x}Srx_{x}CuO4_{4} (LSCO), where the chemical potential does not shift, yet the dispersive band and the Fermi arc/surface are formed around the Fermi level already in the lightly-doped region. The (underlying) Fermi surface shape and band dispersions are quantitatively analyzed using tight-binding fit, and the deduced next-nearest-neighbor hopping integral t′t' also confirm the similarity to Na-CCOC and the difference from LSCO

    Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-Tc superconductors

    Full text link
    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.Comment: Original: 4 pages, 4 figures; Replaced: changed and updated content, 12 pages, 6 figure

    Infrared cutoff dependence of the critical flavor number in three-dimensional QED

    Full text link
    We solve, analytically and numerically, a gap equation in parity invariant QED_3 in the presence of an infrared cutoff \mu and derive an expression for the critical fermion number N_c as a function of \mu. We argue that this dependence of N_c on the infrared scale might solve the discrepancy between continuum Schwinger-Dyson equations studies and lattice simulations of QED_3.Comment: 5 pages, 1 figure (revtex4), final versio
    • …
    corecore