61 research outputs found
Anisotropic Effects in Geometrically Isotropic Lattices
The study of the dielectric properties of a lattice composed of identical metallic or dielectric elements of various geometries has re- ceived considerable attention in recent years in connection with the prac- tical application of such structures for polarizing devices, microwave lenses, and radome materials. It has been shown by the author1 that, for spacings and element dimensions small with respect to wavelength, the dielectric constant of a completely general uniform lattice of identical elements may be represented by a tensor (k_e) which may be written in functional form as
(k_e) = f[(T), (δ)],
where (T) is the structural anisotropy tensor which is related to the geometry of the lattice and (δ) is the polarizability tensor of the elements of the lattice. (δ) describes element anisotropy which may be due to material, the shape of the element, or both. An example of a lattice element displaying only material anisotropy is a ferrite or gaseous element of spherical shape immersed in a magnetostatic field. An example of shape anisotropy is the case of metallic or dielectric objects of non-spherical shape. In general, then, for spacing and element dimensions small compared to wavelength, there can be three orders of anisotropy in a lattice—structural or lattice anisotropy, material anisotropy, and anisotropy because of element shape. Examples of each type are described and discussed in detail in the aforementioned reference. A fourth order of anisotropy, which is related to the granularity of the lattice and be- comes important at higher frequencies will be described and investigated in this paper.
It is usually important that the artificial material be as close as possible in physical properties to a real dielectric. This requires that it should be isotropic; that is, the structure should exhibit the same properties for a plane wave propagating through it in any direction. This behavior requires that (k_e) reduce to a scalar which, in turn, demands that (T) and (δ) become scalars, except for the special case in which the structural anisotropy of the array is compensated for by the element anisotropy in which case (k_e) is reduced to a scalar. The structural anisotropy tensor (T) will reduce to a scalar only if the lattice is cubical, while (δ) becomes a scalar only if the geometry and material of the lattice elements are so restricted that the induced fields may be represented by a set of three mutually perpendicular static dipoles on the lattice points.1 Isotropic behavior further requires that the moments of the resultant dipoles must be proportional to the inducing field. The proportionality factor is a scalar independent of direction. However, at shorter wavelengths the representation of the lattice elements by static dipoles will not be valid and the medium becomes anisotropic. The main objective of this paper is to evaluate the anisotropy produced by the finite ratio of wavelength to element spacing and to show that the Clausius-Mosotti relation so often used in predicting the properties of artificial lattice dielectrics is a satisfactory approximation only if the spacing is very small with respect to wavelength
Seipin regulates ER-lipid droplet contacts and cargo delivery
Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER-LD contacts in human cells, typically via one mobile focal point per LD Seipin appears critical for such contacts since ER-LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin-deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre-existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER-LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.Peer reviewe
Activated Met Signalling in the Developing Mouse Heart Leads to Cardiac Disease
BACKGROUND: The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we generated two transgenic mice with cardiac-specific, tetracycline-suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore: i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of sustained activation of Met signalling in the heart. We first showed that Met is present in the neonatal cardiomyocytes and is responsive to exogenous HGF. Exogenous HGF starting from prenatal stage enhanced cardiac proliferation and reduced sarcomeric proteins and Connexin43 (Cx43) in newborn mice. As adults, these transgenics developed systolic contractile dysfunction. Conversely, prenatal Tpr-Met expression was lethal after birth. Inducing Tpr-Met expression during postnatal life caused early-onset heart failure, characterized by decreased Cx43, upregulation of fetal genes and hypertrophy. CONCLUSIONS/SIGNIFICANCE: Taken together, our data show that excessive activation of the HGF/Met system in development may result in cardiac damage and suggest that Met signalling may be implicated in the pathogenesis of cardiac disease
siRNA-Mediated Gene Targeting in Aedes aegypti Embryos Reveals That Frazzled Regulates Vector Mosquito CNS Development
Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects
Semaphorin-1a Is Required for Aedes aegypti Embryonic Nerve Cord Development
Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a) was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA) receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector), suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects
Comparative Genomic Analysis of Drosophila melanogaster and Vector Mosquito Developmental Genes
Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments
Neurexins and Neuroligins: Recent Insights from Invertebrates
During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals
- …