26,703 research outputs found
Hierarchical Structure Formation and Chemical Evolution of Damped Ly alpha Systems
We present a model for chemical evolution of damped Ly alpha systems
considering production of metals by SNe II and infall associated with
hierarchical structure formation. The growth of metallicity in these systems is
a reflection of the competition between astration and infall. The apparent late
turn-on of these systems is due to the late cut-off of infall. The wide range
in [Fe/H] at a given redshift is explained by the range of the times for onset
of star formation and the range of the times for infall cessation in different
systems. The observed lower bound of [Fe/H] = -3 follows from the very rapid
initial rise of [Fe/H] subsequent to onset of star formation. To reach [Fe/H] =
-3 from a metal-free initial state requires only about 30 Myr so that the
probability of observing lower [Fe/H] values is very small.Comment: 4 pages, 2 figures, to appear in ApJ
Probing r-Process Production of Nuclei Beyond Bi209 with Gamma Rays
We estimate gamma-ray fluxes due to the decay of nuclei beyond Bi209 from a
supernova or a supernova remnant assuming that the r-process occurs in
supernovae. We find that a detector with a sensitivity of about 10**(-7)
photons/cm**2/s at energies of 40 keV to 3 MeV may detect fluxes due to the
decay of Ra226, Th229, Am241, Am243, Cf249, and Cf251 in the newly discovered
supernova remnant near Vela. In addition, such a detector may detect fluxes due
to the decay of Ac227 and Ra228 produced in a future supernova at a distance of
about 1 kpc. As nuclei with mass numbers A > 209 are produced solely by the
r-process, such detections are the best proof for a supernova r-process site.
Further, they provide the most direct information on yields of progenitor
nuclei with A > 209 at r-process freeze-out. Finally, detection of fluxes due
to the decay of r-process nuclei over a range of masses from a supernova or a
supernova remnant provides the opportunity to compare yields in a single
supernova event with the solar r-process abundance pattern.Comment: 24 pages, 3 figures, to appear in the October 10, 1999 issue of Ap
Abundances in the Uranium-Rich Star CS 31082-001
The recent discovery by Cayrel et al. of U in CS 31082-001 along with Os and
Ir at greatly enhanced abundances but with [Fe/H]=-2.9 strongly reinforces the
argument that there are at least two kinds of SNII sources for r-nuclei. One
source is the high-frequency H events responsible for heavy r-nuclei (A>135)
but not Fe. The H-yields calculated from data on other ultra-metal-poor stars
and the sun provide a template for quantitatively predicting the abundances of
all other r-elements. In CS 31082-001 these should show a significant
deficiency at A<135 relative to the solar r-pattern. It is proposed that CS
31082-001 should have had a companion that exploded as an SNII H event. If the
binary survived the explosion, this star should now have a compact companion,
most likely a stellar-mass black hole. Comparison of abundance data with
predicted values and a search for a compact companion should provide a
stringent test of the proposed r-process model. The U-Th age determined by
Cayrel et al. for CS 31082-001 is, to within substantial uncertainties, in
accord with the r-process age determined from solar system data. The time gap
between Big Bang and onset of normal star formation only allows r-process
chronometers to provide a lower limit on the age of the universe.Comment: 5 pages, 1 figur
Supernovae as the Site of the r-Process: Implications for Gamma-Ray Astronomy
We discuss how detection of gamma-ray emission from the decay of r-process
nuclei can improve our understanding of r-process nucleosynthesis. We find that
a gamma-ray detector with a sensitivity of 10**(-7)/cm**2/s at 100-700 keV may
detect the emission from the decay of Sb125, Cs137, Ce144, Eu155, and Os194
produced in a future Galactic supernova. In addition, such a detector may
detect the emission from the decay of Sn126 in the Vela supernova remnant and
the diffuse emission from the decay of Sn126 produced by past supernovae in our
Galaxy. The required detector sensitivity is similar to what is projected for
the proposed Advanced Telescope for High Energy Nuclear Astrophysics (ATHENA).
Both the detection of gamma-ray emission from the decay of several r-process
nuclei (e.g., Sb125 and Os194) produced in future Galactic supernovae and the
detection of emission from the decay of Sn126 in the Vela supernova remnant
would prove that supernovae are a site of the r-process. Furthermore, the
former detection would allow us to determine whether or not the r-process
nuclei are produced in relative proportions specified by the solar r-process
abundance pattern in supernova r-process events. Finally, detection of diffuse
emission from the decay of Sn126 in our Galaxy would eliminate neutron
star/neutron star mergers as the main source for the r-process nuclei near mass
number A=126.Comment: 14 pages, AASTeX, submitted to the Astrophysical Journa
Chemical Evolution of the Juvenile Universe
Only massive stars contribute to the chemical evolution of the juvenile
universe corresponding to [Fe/H]<-1.5. If Type II supernovae (SNe II) are the
only relevant sources, then the abundances in the interstellar medium of the
juvenile epoch are simply the sum of different SN II contributions. Both
low-mass (~8-11M_sun) and normal (~12-25M_sun) SNe II produce neutron stars,
which have intense neutrino-driven winds in their nascent stages. These winds
produce elements such as Sr, Y, and Zr through charged-particle reactions
(CPR). Such elements are often called the light r-process elements, but are
considered here as products of CPR and not the r-process. The observed absence
of production of the low-A elements (Na through Zn including Fe) when the true
r-process elements (Ba and above) are produced requires that only low-mass SNe
II be the site if the r-process occurs in SNe II. Normal SNe II produce the CPR
elements in addition to the low-A elements. This results in a two-component
model that is quantitatively successful in explaining the abundances of all
elements relative to hydrogen for -3<[Fe/H]<-1.5. This model explicitly
predicts that [Sr/Fe]>-0.32. Recent observations show that there are stars with
[Sr/Fe]<-2 and [Fe/H]<-3. This proves that the two-component model is not
correct and that a third component is necessary to explain the observations.
This leads to a simple three-component model including low-mass and normal SNe
II and hypernovae (HNe), which gives a good description of essentially all the
data for stars with [Fe/H]<-1.5. We conclude that HNe are more important than
normal SNe II in the chemical evolution of the low-A elements, in sharp
distinction to earlier models. (Abridged)Comment: 10 pages, 9 figures, to appear in Pub. Astron. Soc. Australi
Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models
We explore the effects of nuclear masses on the temperature and neutron
density conditions required for r-process nucleosynthesis using four nuclear
mass models augmented by the latest atomic mass evaluation. For each model we
derive the conditions for producing the observed abundance peaks at mass
numbers A ~ 80, 130, and 195 under the waiting-point approximation and further
determine the sets of conditions that can best reproduce the r-process
abundance patterns (r-patterns) inferred for the solar system and observed in
metal-poor stars of the Milky Way halo. In broad agreement with previous
studies, we find that (1) the conditions for producing abundance peaks at A ~
80 and 195 tend to be very different, which suggests that, at least for some
nuclear mass models, these two peaks are not produced simultaneously; (2) the
typical conditions required by the critical waiting-point (CWP) nuclei with the
N = 126 closed neutron shell overlap significantly with those required by the
N=82 CWP nuclei, which enables coproduction of abundance peaks at A ~ 130 and
195 in accordance with observations of many metal-poor stars; and (3) the
typical conditions required by the N = 82 CWP nuclei can reproduce the
r-pattern observed in the metal-poor star HD 122563, which differs greatly from
the solar r-pattern. We also examine how nuclear mass uncertainties affect the
conditions required for the r-process and identify some key nuclei
including76Ni to 78Ni, 82Zn, 131Cd, and 132Cd for precise mass measurements at
rare-isotope beam facilities.Comment: 28 pages,9 figures,1 tabl
Human African trypanosomiasis : the current situation in endemic regions and the risks for non-endemic regions from imported cases
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei
gambiense and T. b. rhodesiense and caused devastating epidemics during the 20th
century. Due to effective control programs implemented in the last two decades, the
number of reported cases has fallen to a historically low level. Although fewer than
977 cases were reported in 2018 in endemic countries, HAT is still a public health
problem in endemic regions until it is completely eliminated. In addition, almost 150
confirmed HAT cases were reported in non-endemic countries in the last three
decades. The majority of non-endemic HAT cases were reported in Europe, United
States and South Africa, due to historical alliances, economic links or geographic
proximity to disease endemic countries. Furthermore, with the implementation of the
âBelt and Roadâ project, sporadic imported HAT cases have been reported in China
as a warning sign of tropical diseases prevention. In this paper, we explore and
interpret the data on HAT incidence and find no positive correlation between the
number of HAT cases from endemic and non-endemic countries.This data will
provide useful information for better understanding the imported cases of HAT
globally in the post-elimination phase
- âŠ