30 research outputs found

    Baikal-GVD: status and prospects

    Full text link
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope under construction in Lake Baikal. It is designed to detect astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton subarrays (clusters). The array construction started in 2015 by deployment of a reduced-size demonstration cluster named "Dubna". The first cluster in its baseline configuration was deployed in 2016, the second in 2017 and the third in 2018. The full scale GVD will be an array of ~10000 light sensors with an instrumented volume of about 2 cubic km. The first phase (GVD-1) is planned to be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors in total. We describe the design of Baikal-GVD and present selected results obtained in 2015-2017.Comment: 9 pages, 8 figures. Conference proceedings for QUARKS201

    Baikal-GVD

    Full text link
    We present the status of the Gigaton Volume Detector in Lake Baikal (Baikal-GVD) designed for the detection of high energy neutrinos of astrophysical origin. The telescope consists of functionally independent clusters, sub-arrays of optical modules (OMs), which are connected to shore by individual electro-optical cables. During 2015 the GVD demonstration cluster, comprising 192 OMs, has been successfully operated in Lake Baikal. In 2016 this array was upgraded to baseline configuration of GVD cluster with 288 OMs arranged on eight vertical strings. Thus the instrumented water volume has been increased up to about 5.9 Mtons. The array was commissioned in early April 2016 and takes data since then. We describe the configuration and design of the 2016 array. Preliminary results obtained with data recorded in 2015 are also discussed

    The optical module of Baikal-GVD

    No full text
    The Baikal-GVD neutrino telescope in Lake Baikal is intended for studying astrophysical neutrino fluxes by recording the Cherenkov radiation of the secondary muons and showers generated in neutrino interactions. The first stage of Baikal-GVD will be equipped with about 2300 optical modules. We describe the design of the optical module, the front-end electronics and the laboratory characterization and calibration before deployment

    Baikal-GVD: Results, status and plans

    No full text
    The future next-generation neutrino telescope Baikal-GVD will be a km3-scale array aimed at the detection of astrophysical neutrino fluxes. It will have modular structure and consist of functionally independent sub-arrays – clusters of strings of optical modules. The prototyping phase of the project has been concluded in 2015 with the deployment of the first cluster of Baikal-GVD in Lake Baikal. We discuss the current status and perspectives of the Baikal-GVD project
    corecore