8 research outputs found

    Complexes of d- and f-metal ions with pyridine N-oxide and its derivatives: spectroscopic studies

    No full text
    This article reviews results of studies, collected in the literature, related to complexation abilities of pyridine N-oxides, including forms and properties of dand f-metal ion complexes with this group of ligands. In this paper the synthetic pathways of the ligands, based on an oxidation of the corresponding heterocyclic compounds are presented (Scheme 3) [2, 4, 5]. Substituted pyridine N-oxides form an interesting group of compounds, which have found numerous applications [296-299, 314-318]. They have been used in catalysis, crystal engineering, synthesis of coordination polymers, as well as drugs and components in pharmaceutical chemistry [300-309]. Some of them are useful in destroying of microorganisms and the HIV virus [277, 278, 303-307]. Moreover, they are important compounds in the thermal and photochemical oxidation processes [296-299]. The complexes of metal ions with the N-oxide ligands can be formed by binding an oxygen atom of the N›O group, and/or by binding the substituents present in the aromatic ring, e.g. oxygen atoms of carboxylic groups. The complexes can be obtained in monomeric [64, 159], dimeric [58] or polymeric forms [60, 153, 175]. The formation of polymeric forms is more effective when the distance between the positions of COOH and N›O groups in the aromatic ring increases [168]. Complexes of Ln3+ ions and particularly of Eu3+ with pyridine N-oxides are good luminescent materials, better than their heterocyclic counterparts [180, 211]. The emission intensity of europium ions in these systems depends on the efficiency of the LMCT (ligand-metal charge transfer) and LMET (ligand-metal energy transfer) transitions, as well as on electron-donor properties of the substituents present in the pyridine N-oxide ring [37, 132, 155]. A special role in the complexation of Ln3+ ions plays cryptands, which can encapsulate the metal ion. This process protects the metal ion from a penetration of its first coordination sphere by solvent molecules or counterions [245, 246]. The complexes of europium(III) with macromonocyclic, macrobicyclic and acyclic ligands, equipped with photoactive units such as pyridine N-oxide, 2,2'-bipyridine-N,N'-dioxide or 3,3'-biisoquinoline-2,2'-dioxide in solutions, solid states, and incorporated in a silicate matrices by sol-gel method, gained a lot of attention [247-274]

    Spectroscopic Characterization of Ethylenediamine-di(o-hydroxyphenyl)acetic Acid and its Complexes with Lanthanide(III) Ions

    No full text
    Binding properties of ethylenediaminedi(o-hydroxyphenyl)acetic acid (EHPG) with lanthanide(III) ions were studied using spectroscopic methods. Luminescence intensity and lifetime of the Tb(III) ion were measured in a wide pH range in order to characterize the Ln-EHPG complexation. The calculated hydration number of the Tb-EHPG system proved the replacement of six water molecules by the EHPG ligand in the inner coordination sphere of Tb(III). Energy transfer from Tb(III) to Eu(III) in the Tb(III)-EHPG-Eu(III) system indicated an existence of only monomeric form of the Tb-EHPG complex. Analysis of the ^1H NMR and FTIR spectra of the EHPG ligand and its complexes with lanthanide(III) ions confirmed the hexadentate manner of EHPG complexation with the lanthanides. The system of Dy(III)-EHPG, showing a linear dependence of luminescence intensity (λem\text{}_{em}=578 nm) of Dy(III) on its concentration, in the range of 3.3×10-7 to 1×10-5 mol. l-1, can be applied for spectrofluorimetric determination of Dy(III)

    Lanthanide-Based Luminescent Hybrid Materials

    No full text
    corecore