435 research outputs found

    Common-reflection-surface imaging of shallow and ultrashallow reflectors

    Get PDF
    We analyzed the feasibility of the common-reflection-surface (CRS) stack for near-surface surveys as an alternative to the conventional common midpoint (CMP) stacking procedure. The data-driven, less user-interactive CRS method could be more cost efficient for shallow surveys, where the high sensitivity to velocity analysis makes data processing a critical step. We compared the results for two field data sets collected to image shallow and ultrashallow reflectors: an example of shallow Pwave reflection for targets in the first few hundred meters, and an example of SH-wave reflection for targets in the first 10 m. By processing the shallow P-wave records using the CMP method, we imaged several nearly horizontal reflectors with onsets from 60 to about 250 ms. The CRS stack produced a stacked section more suited for a subsurface interpretation, without any preliminary formal and time-consuming velocity analysis, because the imaged reflectors possessed greater coherency and lateral continuity. With CMP processing of the SHwave records, we imaged a dipping bedrock interface below four horizontal reflectors in unconsolidated, very low velocity sediments. The vertical and lateral resolution was very high, despite the very shallow depth: the image showed the pinchout of two layers at less than 10 m depth. The numerous traces used by the CRS stack improved the continuity of the shallowest reflector, but the deepest overburden reflectors appear unresolved, with not well-imaged pinchouts. Using the kinematic wavefield attributes determined for each stacking operation, we retrieved velocity fields fitting the stacking velocities we had estimated in the CMP processing. The use of CRS stack could be a significant step ahead to increase the acceptance of the seismic reflection method as a routine investigation method in shallow and ultrashallow seismics

    Fermionization and Hubbard Models

    Full text link
    We introduce a transformation which allows the fermionization of operators of any one-dimensional spin-chain. This fermionization procedure is independent of any eventual integrable structure and is compatible with it. We illustrate this method on various integrable and non-integrable chains, and deduce some general results. In particular, we fermionize XXC spin-chains and study their symmetries. Fermionic realizations of certain Lie algebras and superalgebras appear naturally as symmetries of some models. We also fermionize recently obtained Hubbard models, and obtain for the first time multispecies analogues of the Hubbard model, in their fermionic form. We comment on the conflict between symmetry enhancement and integrability of these models. Finally, the fermionic versions of the non integrable spin-1 and spin-3/2 Heisenberg chains are obtained.Comment: 24 pages, Latex. Minor typos corrected, one equation adde

    Algebraic Bethe ansatz approach for the one-dimensional Hubbard model

    Get PDF
    We formulate in terms of the quantum inverse scattering method the algebraic Bethe ansatz solution of the one-dimensional Hubbard model. The method developed is based on a new set of commutation relations which encodes a hidden symmetry of 6-vertex type.Comment: appendix additioned with Boltzmann weigths and R-matrix. Version to be published in J.Phys.A:math.Gen. (1997

    Integrable variant of the one-dimensional Hubbard model

    Get PDF
    A new integrable model which is a variant of the one-dimensional Hubbard model is proposed. The integrability of the model is verified by presenting the associated quantum R-matrix which satisfies the Yang-Baxter equation. We argue that the new model possesses the SO(4) algebra symmetry, which contains a representation of the η\eta-pairing SU(2) algebra and a spin SU(2) algebra. Additionally, the algebraic Bethe ansatz is studied by means of the quantum inverse scattering method. The spectrum of the Hamiltonian, eigenvectors, as well as the Bethe ansatz equations, are discussed

    SO(4) Symmetry of the Transfer Matrix for the One-Dimensional Hubbard Model

    Full text link
    The SO(4) invariance of the transfer matrix for the one-dimensional Hubbard model is clarified from the QISM (quantum inverse scattering method) point of view. We demonstrate the SO(4) symmetry by means of the fermionic R-matrix, which satisfy the graded Yang-Baxter relation. The transformation law of the fermionic L-operator under the SO(4) rotation is identified with a kind of gauge transformation, which determines the corresponding transformation of the fermionic creation and annihilation operators under the SO(4) rotation. The transfer matrix is confirmed to be invariant under the SO(4) rotation, which ensures the SO(4) invariance of the conserved currents including the Hamiltonian. Furthermore, we show that the representation of the higher conserved currents in terms of the Clifford algebra gives manifestly SO(4) invariant forms.Comment: 20 pages, LaTeX file using citesort.st

    Policy Experimentation and Innovation as a Response to Complexity in China’s Management of Health Reforms

    Get PDF
    There are increasing criticisms of dominant models for scaling up health systems in developing countries and a recognition that approaches are needed that better take into account the complexity of health interventions. Since Reform and Opening in the late 1970s, Chinese government has managed complex, rapid and intersecting reforms across many policy areas. As with reforms in other policy areas, reform of the health system has been through a process of trial and error. There is increasing understanding of the importance of policy experimentation and innovation in many of China’s reforms; this article argues that these processes have been important in rebuilding China’s health system. While China’s current system still has many problems, progress is being made in developing a functioning system able to ensure broad population access. The article analyses Chinese thinking on policy experimentation and innovation and their use in management of complex reforms. It argues that China’s management of reform allows space for policy tailoring and innovation by sub-national governments under a broad agreement over the ends of reform, and that shared understandings of policy innovation, alongside informational infrastructures for the systemic propagation and codification of useful practices, provide a framework for managing change in complex environments and under conditions of uncertainty in which ‘what works’ is not knowable in advance. The article situates China’s use of experimentation and innovation in management of health system reform in relation to recent literature which applies complex systems thinking to global health, and concludes that there are lessons to be learnt from China’s approaches to managing complexity in development of health systems for the benefit of the poor

    Super-Hubbard models and applications

    Get PDF
    We construct XX- and Hubbard- like models based on unitary superalgebras gl(N|M) generalising Shastry's and Maassarani's approach of the algebraic case. We introduce the R-matrix of the gl(N|M) XX model and that of the Hubbard model defined by coupling two independent XX models. In both cases, we show that the R-matrices satisfy the Yang--Baxter equation, we derive the corresponding local Hamiltonian in the transfer matrix formalism and we determine the symmetry of the Hamiltonian. Explicit examples are worked out. In the cases of the gl(1|2) and gl(2|2) Hubbard models, a perturbative calculation at two loops a la Klein and Seitz is performed.Comment: 26 page

    Evaluating the effectiveness and cost effectiveness of the ‘strengthening families, strengthening communities’ group-based parenting programme: study protocol and initial insights

    Get PDF
    Background: Up to 20% of UK children experience socio-emotional difficulties which can have serious implications for themselves, their families and society. Stark socioeconomic and ethnic inequalities in children’s well-being exist. Supporting parents to develop effective parenting skills is an important preventive strategy in reducing inequalities. Parenting interventions have been developed, which aim to reduce the severity and impact of these difficulties. However, most parenting interventions in the UK focus on early childhood (0–10 years) and often fail to engage families from ethnic minority groups and those living in poverty. Strengthening Families, Strengthening Communities (SFSC) is a parenting programme designed by the Race Equality Foundation, which aims to address this gap. Evidence from preliminary studies is encouraging, but no randomised controlled trials have been undertaken so far. Methods/design: The TOGETHER study is a multi-centre, waiting list controlled, randomised trial, which aims to test the effectiveness of SFSC in families with children aged 3–18 across seven urban areas in England with ethnically and socially diverse populations. The primary outcome is parental mental well-being (assessed by the Warwick-Edinburgh Mental Well-Being Scale). Secondary outcomes include child socio-emotional well-being, parenting practices, family relationships, self-efficacy, quality of life, and community engagement. Outcomes are assessed at baseline, post intervention, three- and six-months post intervention. Cost effectiveness will be estimated using a cost-utility analysis and cost-consequences analysis. The study is conducted in two stages. Stage 1 comprised a 6-month internal pilot to determine the feasibility of the trial. A set of progression criteria were developed to determine whether the stage 2 main trial should proceed. An embedded process evaluation will assess the fidelity and acceptability of the intervention. Discussion: In this paper we provide details of the study protocol for this trial. We also describe challenges to implementing the protocol and how these were addressed. Once completed, if beneficial effects on both parental and child outcomes are found, the impact, both immediate and longer term, are potentially significant. As the intervention focuses on supporting families living in poverty and those from minority ethnic communities, the intervention should also ultimately have a beneficial impact on reducing health inequalities. Trial registration: Prospectively registered Randomised Controlled Trial ISRCTN15194500

    Excitons in one-dimensional Mott insulators

    Full text link
    We employ dynamical density-matrix renormalization group (DDMRG) and field-theory methods to determine the frequency-dependent optical conductivity in one-dimensional extended, half-filled Hubbard models. The field-theory approach is applicable to the regime of `small' Mott gaps which is the most difficult to access by DDMRG. For very large Mott gaps the DDMRG recovers analytical results obtained previously by means of strong-coupling techniques. We focus on exciton formation at energies below the onset of the absorption continuum. As a consequence of spin-charge separation, these Mott-Hubbard excitons are bound states of spinless, charged excitations (`holon-antiholon' pairs). We also determine exciton binding energies and sizes. In contrast to simple band insulators, we observe that excitons exist in the Mott-insulating phase only for a sufficiently strong intersite Coulomb repulsion. Furthermore, our results show that the exciton binding energy and size are not related in a simple way to the strength of the Coulomb interaction.Comment: 15 pages, 6 eps figures, corrected typos in labels of figures 4,5, and
    • 

    corecore