20,364 research outputs found

    Hyperaccretion Disks around Neutron Stars

    Full text link
    (Abridged) We here study the structure of a hyperaccretion disk around a neutron star. We consider a steady-state hyperaccretion disk around a neutron star, and as a reasonable approximation, divide the disk into two regions, which are called inner and outer disks. The outer disk is similar to that of a black hole and the inner disk has a self-similar structure. In order to study physical properties of the entire disk clearly, we first adopt a simple model, in which some microphysical processes in the disk are simplified, following Popham et al. and Narayan et al. Based on these simplifications, we analytically and numerically investigate the size of the inner disk, the efficiency of neutrino cooling, and the radial distributions of the disk density, temperature and pressure. We see that, compared with the black-hole disk, the neutron star disk can cool more efficiently and produce a much higher neutrino luminosity. Finally, we consider an elaborate model with more physical considerations about the thermodynamics and microphysics in the neutron star disk (as recently developed in studying the neutrino-cooled disk of a black hole), and compare this elaborate model with our simple model. We find that most of the results from these two models are basically consistent with each other.Comment: 44 pages, 10 figures, improved version following the referees' comments, main conclusions unchanged, accepted for publication in Ap

    Can the Bump be Observed in the Early Afterglow of GRBS with X-Ray Line Emission Features?

    Full text link
    Extremely powerful emission lines are observed in the X-ray afterglow of several GRBs. The energy contained in the illuminating continuum which is responsible for the line production exceeds 1051^{51} erg, much higher than that of the collimated GRBs. It constrains the models which explain the production of X-ray emission lines. In this paper, We argue that this energy can come from a continuous postburst outflow. Focusing on a central engine of highly magnetized millisecond pulsar or magnetar we find that afterglow can be affected by the illuminating continuum, and therefore a distinct achromatic bump may be observed in the early afterglow lightcurves. With the luminosity of the continuous outflow which produces the line emission, we define the upper limit of the time when the bump feature appears. We argue that the reason why the achromatic bumps have not been detected so far is that the bumps should appear at the time too early to be observed.Comment: 13 pags, 2 tables, appear in v603 n1 pt1 ApJ March 1, 2004 issu

    An unexpectedly low-redshift excess of Swift gamma-ray burst rate

    Get PDF
    Gamma-ray bursts (GRBs) are the most violent explosions in the Universe and can be used to explore the properties of high-redshift universe. It is believed that the long GRBs are associated with the deaths of massive stars. So it is possible to use GRBs to investigate the star formation rate (SFR). In this paper, we use Lynden-Bell's cc^- method to study the luminosity function and rate of \emph{Swift} long GRBs without any assumptions. We find that the luminosity of GRBs evolves with redshift as L(z)g(z)=(1+z)kL(z)\propto g(z)=(1+z)^k with k=2.430.38+0.41k=2.43_{-0.38}^{+0.41}. After correcting the redshift evolution through L0(z)=L(z)/g(z)L_0(z)=L(z)/g(z), the luminosity function can be expressed as ψ(L0)L00.14±0.02\psi(L_0)\propto L_0^{-0.14\pm0.02} for dim GRBs and ψ(L0)L00.70±0.03\psi(L_0)\propto L_0^{-0.70\pm0.03} for bright GRBs, with the break point L0b=1.43×1051 erg s1L_{0}^{b}=1.43\times10^{51}~{\rm erg~s^{-1}}. We also find that the formation rate of GRBs is almost constant at z<1.0z<1.0 for the first time, which is remarkably different from the SFR. At z>1.0z>1.0, the formation rate of GRB is consistent with the SFR. Our results are dramatically different from previous studies. Some possible reasons for this low-redshift excess are discussed. We also test the robustness of our results with Monte Carlo simulations. The distributions of mock data (i.e., luminosity-redshift distribution, luminosity function, cumulative distribution and logNlogS\log N-\log S distribution) are in good agreement with the observations. Besides, we also find that there are remarkable difference between the mock data and the observations if long GRB are unbiased tracers of SFR at z<1.0z<1.0.Comment: 33 pages, 10 figures, 1 table, accepted by ApJ

    Gamma-ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly-Magnetized Millisecond Pulsar

    Full text link
    We investigate the consequences of a continuously injecting central engine on the gamma-ray burst afterglow emission, focusing more specifically on a highly-magnetized millisecond pulsar engine. For initial pulsar parameters within a certain region of the parameter space, the afterglow lightcurves are predicted to show a distinctive achromatic bump feature, the onset and duration of which range from minutes to months, depending on the pulsar and the fireball parameters. The detection of or upper limits on such features would provide constraints on the burst progenitor and on magnetar-like central engine models. An achromatic bump such as that in GRB 000301C afterglow may be caused by a millisecond pulsar with P0=3.4 millisecond and Bp=2.7e14 Gauss.Comment: 5 pages, emulateapj style, to appear in ApJ Letters, updated with the accepted version, a few corrections are mad

    A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China

    Get PDF
    Cosmic rays interact with the Earth's atmosphere to produce 14^{14}C, which can be absorbed by trees. Therefore, rapid increases of 14^{14}C in tree rings can be used to probe previous cosmic-ray events. By this method, three 14^{14}C rapidly increasing events have been found. Plausible causes of these events include large solar proton events, supernovae or short gamma-ray bursts. However, due to the lack of measurements of 14^{14}C by year, the occurrence frequency of such 14^{14}C rapidly increasing events is poorly known. In addition, rapid increases may be hidden in the IntCal13 data with five-year resolution. Here we report the result of 14^{14}C measurements using an ancient buried tree during the period between BC 3388 and 3358. We find a rapid increase of about 9\textperthousand~ in the 14^{14}C content from BC 3372 to BC 3371. We suggest that this event could originate from a large solar proton event.Comment: 23 pages, 3 figures, 2 tables, published in Nature Communication
    corecore