31,565 research outputs found
Error-constrained filtering for a class of nonlinear time-varying delay systems with non-gaussian noises
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the quadratic error-constrained filtering problem is formulated and investigated for discrete time-varying nonlinear systems with state delays and non-Gaussian noises. Both the Lipschitz-like and ellipsoid-bounded nonlinearities are considered. The non-Gaussian noises are assumed to be unknown, bounded, and confined to specified ellipsoidal sets. The aim of the addressed filtering problem is to develop a recursive algorithm based on the semi-definite programme method such that, for the admissible time-delays, nonlinear parameters and external bounded noise disturbances, the quadratic estimation error is not more than a certain optimized upper bound at every time step. The filter parameters are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the
U.K., the National Natural Science Foundation of China under Grant 61028008
and Grant 61074016, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany.
Recommended by Associate Editor E. Fabre
Probability-dependent gain-scheduled control for discrete stochastic delayed systems with randomly occurring nonlinearities
This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 John Wiley & Sons, Ltd.In this paper, the gain-scheduled control problem is addressed by using probability-dependent Lyapunov functions for a class of discrete-time stochastic delayed systems with randomly occurring sector nonlinearities. The sector nonlinearities are assumed to occur according to a time-varying Bernoulli distribution with measurable probability in real time. The multiplicative noises are given by means of a scalar Gaussian white noise sequence with known variances. The aim of the addressed gain-scheduled control problem is to design a controller with scheduled gains such that, for the admissible randomly occurring nonlinearities, time delays and external noise disturbances, the closed-loop system is exponentially mean-square stable. Note that the designed gain-scheduled controller is based on the measured time-varying probability and is therefore less conservative than the conventional controller with constant gains. It is shown that the time-varying controller gains can be derived in terms of the measurable probability by solving a convex optimization problem via the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the UK, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61134009, 61074016, 61104125 and 60974030, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany
Probability-dependent gain-scheduled filtering for stochastic systems with missing measurements
Copyright @ 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This brief addresses the gain-scheduled filtering problem for a class of discrete-time systems with missing measurements, nonlinear disturbances, and external stochastic noise. The missing-measurement phenomenon is assumed to occur in a random way, and the missing probability is time-varying with securable upper and lower bounds that can be measured in real time. The multiplicative noise is a state-dependent scalar Gaussian white-noise sequence with known variance. The addressed gain-scheduled filtering problem is concerned with the design of a filter such that, for the admissible random missing measurements, nonlinear parameters, and external noise disturbances, the error dynamics is exponentially mean-square stable. The desired filter is equipped with time-varying gains based primarily on the time-varying missing probability and is therefore less conservative than the traditional filter with fixed gains. It is shown that the filter parameters can be derived in terms of the measurable probability via the semidefinite program method.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61074016 and 60974030, the Shanghai Natural
Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany
On nonlinear H∞ filtering for discrete-time stochastic systems with missing measurements
Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the H∞ filtering problem is investigated for a general class of nonlinear discrete-time stochastic systems with missing measurements. The system under study is not only corrupted by state-dependent white noises but also disturbed by exogenous inputs. The measurement output contains randomly missing data that is modeled by a Bernoulli distributed white sequence with a known conditional probability. A filter of very general form is first designed such that the filtering process is stochastically stable and the filtering error satisfies H infin performance constraint for all admissible missing observations and nonzero exogenous disturbances under the zero-initial condition. The existence conditions of the desired filter are described in terms of a second-order nonlinear inequality. Such an inequality can be decoupled into some auxiliary ones that can be solved independently by taking special form of the Lyapunov functionals. As a consequence, a linear time-invariant filter design problem is discussed for the benefit of practical applications, and some simplified conditions are obtained. Finally, two numerical simulation examples are given to illustrate the main results of this paper
Distributed H-infinity filtering for polynomial nonlinear stochastic systems in sensor networks
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the distributed H1 filtering problem is addressed for a class of polynomial nonlinear stochastic systems in sensor networks. For a Lyapunov function candidate whose entries are polynomials, we calculate its first- and second-order derivatives in order to facilitate the use of Itos differential role. Then, a sufficient condition for the existence of a feasible solution to the addressed distributed H1 filtering problem is derived in terms of parameter-dependent linear matrix inequalities (PDLMIs). For computational convenience, these PDLMIs are further converted into a set of sums of squares (SOSs) that can be solved effectively by using the semidefinite programming technique. Finally, a numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed design approach.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National 973 Program of China under Grant
2009CB320600, the National Natural Science Foundation of China under Grant 60974030 and the Alexander von Humboldt Foundation of Germany
Quantized H-Infinity control for nonlinear stochastic time-delay systems with missing measurements
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the quantized H∞ control problem is investigated for a class of nonlinear stochastic time-delay network-based systems with probabilistic data missing. A nonlinear stochastic system with state delays is employed to model the networked control systems where the measured output and the input signals are quantized by two logarithmic quantizers, respectively. Moreover, the data missing phenomena are modeled by introducing a diagonal matrix composed of Bernoulli distributed stochastic variables taking values of 1 and 0, which describes that the data from different sensors may be lost with different missing probabilities. Subsequently, a sufficient condition is first derived in virtue of the method of sector-bounded uncertainties, which guarantees that the closed-loop system is stochastically stable and the controlled output satisfies H∞ performance constraint for all nonzero exogenous disturbances under the zero-initial condition. Then, the sufficient condition is decoupled into some inequalities for the convenience of practical verification. Based on that, quantized H∞ controllers are designed successfully for some special classes of nonlinear stochastic time-delay systems by using Matlab linear matrix inequality toolbox. Finally, a numerical simulation example is exploited to show the effectiveness and applicability of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Leverhulme Trust of the U.K., the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61028008, 61134009, 61104125, 60974030, and 61074016, and the Alexander von Humboldt Foundation of Germany
- …