7 research outputs found

    Structural decomposition of decadal climate prediction errors: A Bayesian approach

    Get PDF
    Decadal climate predictions use initialized coupled model simulations that are typically affected by a drift toward a biased climatology determined by systematic model errors. Model drifts thus reflect a fundamental source of uncertainty in decadal climate predictions. However, their analysis has so far relied on ad-hoc assessments of empirical and subjective character. Here, we define the climate model drift as a dynamical process rather than a descriptive diagnostic. A unified statistical Bayesian framework is proposed where a state-space model is used to decompose systematic decadal climate prediction errors into an initial drift, seasonally varying climatological biases and additional effects of co-varying climate processes. An application to tropical and south Atlantic sea-surface temperatures illustrates how the method allows to evaluate and elucidate dynamic interdependencies between drift, biases, hindcast residuals and background climate. Our approach thus offers a methodology for objective, quantitative and explanatory error estimation in climate predictions

    An assessment of ten ocean reanalyses in the polar regions

    Full text link
    Global and regional ocean and sea ice reanalysis products (ORAs) are increasingly used in polar research, but their quality remains to be systematically assessed. To address this, the Polar ORA Intercomparison Project (Polar ORA-IP) has been established following on from the ORA-IP project. Several aspects of ten selected ORAs in the Arctic and Antarctic were addressed by concentrating on comparing their mean states in terms of snow, sea ice, ocean transports and hydrography. Most polar diagnostics were carried out for the first time in such an extensive set of ORAs. For the multi-ORA mean state, we found that deviations from observations were typically smaller than individual ORA anomalies, often attributed to offsetting biases of individual ORAs. The ORA ensemble mean therefore appears to be a useful product and while knowing its main deficiencies and recognising its restrictions, it can be used to gain useful information on the physical state of the polar marine environment

    Clusters of interannual sea ice variability in the northern hemisphere

    Full text link
    We determine robust modes of the northern hemisphere (NH) sea ice variability on interannual timescales disentangled from the long-term climate change. This study focuses on sea ice thickness (SIT), reconstructed with an ocean–sea-ice general circulation model, because SIT has a potential to contain most of the interannual memory and predictability of the NH sea ice system. We use the K-means cluster analysis—one of clustering methods that partition data into groups or clusters based on their distances in the physical space without the typical constraints of other unsupervised learning statistical methods such as the widely-used principal component analysis. To adequately filter out climate change signal in the Arctic from 1958 to 2013 we have to approximate it with a 2nd degree polynomial. Using 2nd degree residuals of SIT leads to robust K-means cluster patterns, i.e. invariant to further increase of the polynomial degree. A set of clustering validity indices yields K = 3 as the optimal number of SIT clusters for all considered months and seasons with strong similarities in their cluster patterns. The associated time series of cluster occurrences exhibit predominant interannual persistence with mean timescale of about 2 years. Compositing analysis of the NH surface climate conditions associated with each cluster indicates that wind forcing seem to be the key factor driving the formation of interannual SIT cluster patterns during the winter. Climate memory in SIT with such interannual persistence could lead to increased predictability of the Artic sea ice cover beyond seasonal timescales
    corecore