7 research outputs found
Recommended from our members
On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models
The CMIP3 (IPCC AR4) models show a consistent intensification and poleward shift of the westerly winds over the Southern Ocean during the 21st century. However, the responses of the Antarctic Circumpolar Currents (ACC) show great diversity in these models, with many even
showing reductions in transport. To obtain some understanding of diverse responses in the ACC transport, we investigate both external atmospheric and internal oceanic processes that control the ACC transport responses in
these models. While the strengthened westerlies act to increase the tilt of isopycnal surfaces and hence the ACC transport through Ekman pumping effects, the associated changes in buoyancy forcing generally tend to reduce the surface
meridional density gradient. The steepening of isopycnal surfaces induced
by increased wind forcing leads to enhanced (parameterized) eddy-induced
transports that act to reduce the isopycnal slopes. There is also considerable narrowing of the ACC that tends to reduce the ACC transport, caused mainly by the poleward shifts of the subtropical gyres and to a lesser extent by the equatorward expansions of the subpolar gyres in some models. If the combined effect of these retarding processes is larger than that of enhanced Ekman pumping, the ACC transport will be reduced. In addition, the effect of Ekman pumping on the ACC is reduced in weakly stratified models. These findings give insight into the reliability of IPCC-class model predictions of the Southern Ocean circulation, and into the observed decadal-scale steady ACC transport
Structural decomposition of decadal climate prediction errors: A Bayesian approach
Decadal climate predictions use initialized coupled model simulations that are typically affected by a drift toward a biased climatology determined by systematic model errors. Model drifts thus reflect a fundamental source of uncertainty in decadal climate predictions. However, their analysis has so far relied on ad-hoc assessments of empirical and subjective character. Here, we define the climate model drift as a dynamical process rather than a descriptive diagnostic. A unified statistical Bayesian framework is proposed where a state-space model is used to decompose systematic decadal climate prediction errors into an initial drift, seasonally varying climatological biases and additional effects of co-varying climate processes. An application to tropical and south Atlantic sea-surface temperatures illustrates how the method allows to evaluate and elucidate dynamic interdependencies between drift, biases, hindcast residuals and background climate. Our approach thus offers a methodology for objective, quantitative and explanatory error estimation in climate predictions
C25 LYMPHOCYTE SUBSET RATIO AS PROGNOSTIC INDICATOR OF NON-MUSCLE INVASIVE BLADDER CANCER RECURRENCE
An assessment of ten ocean reanalyses in the polar regions
Global and regional ocean and sea ice reanalysis products (ORAs) are increasingly used in polar research, but their quality remains to be systematically assessed. To address this, the Polar ORA Intercomparison Project (Polar ORA-IP) has been established following on from the ORA-IP project. Several aspects of ten selected ORAs in the Arctic and Antarctic were addressed by concentrating on comparing their mean states in terms of snow, sea ice, ocean transports and hydrography. Most polar diagnostics were carried out for the first time in such an extensive set of ORAs. For the multi-ORA mean state, we found that deviations from observations were typically smaller than individual ORA anomalies, often attributed to offsetting biases of individual ORAs. The ORA ensemble mean therefore appears to be a useful product and while knowing its main deficiencies and recognising its restrictions, it can be used to gain useful information on the physical state of the polar marine environment
Clusters of interannual sea ice variability in the northern hemisphere
We determine robust modes of the northern hemisphere (NH) sea ice variability on interannual timescales disentangled from the long-term climate change. This study focuses on sea ice thickness (SIT), reconstructed with an oceanâsea-ice general circulation model, because SIT has a potential to contain most of the interannual memory and predictability of the NH sea ice system. We use the K-means cluster analysisâone of clustering methods that partition data into groups or clusters based on their distances in the physical space without the typical constraints of other unsupervised learning statistical methods such as the widely-used principal component analysis. To adequately filter out climate change signal in the Arctic from 1958 to 2013 we have to approximate it with a 2nd degree polynomial. Using 2nd degree residuals of SIT leads to robust K-means cluster patterns, i.e. invariant to further increase of the polynomial degree. A set of clustering validity indices yields K = 3 as the optimal number of SIT clusters for all considered months and seasons with strong similarities in their cluster patterns. The associated time series of cluster occurrences exhibit predominant interannual persistence with mean timescale of about 2 years. Compositing analysis of the NH surface climate conditions associated with each cluster indicates that wind forcing seem to be the key factor driving the formation of interannual SIT cluster patterns during the winter. Climate memory in SIT with such interannual persistence could lead to increased predictability of the Artic sea ice cover beyond seasonal timescales