1,055 research outputs found
Game saturation of intersecting families
We consider the following combinatorial game: two players, Fast and Slow,
claim -element subsets of alternately, one at each turn,
such that both players are allowed to pick sets that intersect all previously
claimed subsets. The game ends when there does not exist any unclaimed
-subset that meets all already claimed sets. The score of the game is the
number of sets claimed by the two players, the aim of Fast is to keep the score
as low as possible, while the aim of Slow is to postpone the game's end as long
as possible. The game saturation number is the score of the game when both
players play according to an optimal strategy. To be precise we have to
distinguish two cases depending on which player takes the first move. Let
and denote the score of
the saturation game when both players play according to an optimal strategy and
the game starts with Fast's or Slow's move, respectively. We prove that
holds
Advanced experimental applications for x-ray transmission gratings Spectroscopy using a novel grating fabrication method
A novel fabrication method for soft x-ray transmission grating and other
optical elements is presented. The method uses Focused-Ion-Beam (FIB)
technology to fabricate high-quality free standing grating bars on Transmission
Electron Microscopy grids (TEM-grid). High quality transmission gratings are
obtained with superb accuracy and versatility. Using these gratings and
back-illuminated CCD camera, absolutely calibrated x-ray spectra can be
acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range.
Double grating combinations of identical or different parameters are easily
fabricated, allowing advanced one-shot application of transmission grating
spectroscopy. These applications include spectroscopy with different spectral
resolutions, bandwidths, dynamic ranges, and may serve for identification of
high-order contribution, and spectral calibrations of various x-ray optical
elements
Development of a triple GEM UV-photon detector operated in pure CF4 for the PHENIX experiment
Results obtained with a triple GEM detector operated in pure CF4 with and
without a reflective CsI photocathode are presented. The detector operates in a
stable mode at gains up to 10^4. A deviation from exponential growth starts to
develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation
when the total charge is ~ 2 10^7 e and making the structure relatively robust
against discharges. No aging effects are observed in the GEM foils after a
total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow
current to the reflective photocathode is comparable to the electron current to
the anode. However, no significant degradation of the CsI photocathode is
observed for a total ion back-flow charge of ~ 7 mC/cm^2.Comment: 14 pages, 11 figures, Submitted to NIM
Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC
A new Hadron Blind Detector (HBD) for electron identification in high density
hadron environment has been installed in the PHENIX detector at RHIC in the
fall of 2006. The HBD will identify low momentum electron-positron pairs to
reduce the combinatorial background in the mass spectrum, mainly
in the low-mass region below 1 GeV/c. The HBD is a windowless
proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI
photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses
pure CF as a radiator and a detector gas. Construction details and the
expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure
Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment
A Hadron Blind Detector (HBD) has been developed, constructed and
successfully operated within the PHENIX detector at RHIC. The HBD is a
Cherenkov detector operated with pure CF4. It has a 50 cm long radiator
directly coupled in a window- less configuration to a readout element
consisting of a triple GEM stack, with a CsI photocathode evaporated on the top
surface of the top GEM and pad readout at the bottom of the stack. This paper
gives a comprehensive account of the construction, operation and in-beam
performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method
A Hadron Blind Detector for the PHENIX Experiment
A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the
PHENIX experiment at RHIC. The HBD will allow a precise measurement of
electron-positron pairs from the decay of the light vector mesons and the
low-mass pair continuum in heavy-ion collisions. The detector consists of a 50
cm long radiator filled with pure CF4 and directly coupled in a windowless
configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI
photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding
Measurement of L-shell emission from mid-Z targets under non-LTE conditions using Transmission Grating Spectrometer and DANTE power diagnostics
Producción CientíficaIn this work, we present the measurement of L-band emission from buried Sc/V targets in experiments performed at the OMEGA laser facility. The goal of these experiments was to study non-local thermodynamic equilibrium plasmas and benchmark atomic physics codes. The L-band emission was measured simultaneously by the time resolved DANTE power diagnostic and the recently fielded time integrated Soreq-Transmission Grating Spectrometer (TGS) diagnostic. The TGS measurement was used to support the spectral reconstruction process needed for the unfolding of the DANTE data. The Soreq-TGS diagnostic allows for broadband spectral measurement in the 120 eV–2000 eV spectral band, covering L- and M-shell emission of mid- and high-Z elements, with spectral resolution λ/Δλ = 8–30 and accuracy better than 25%. The Soreq-TGS diagnostic is compatible with ten-inch-manipulator platforms and can be used for a wide variety of high energy density physics, laboratory astrophysics, and inertial confinement fusion experiments
Low-mass e+e- pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum
We report a measurement of low-mass electron pairs observed in 158
GeV/nucleon Pb-Au collisions. The pair yield integrated over the range of
invariant masses 0.2 < m < 2.0 GeV is enhanced by a factor of 3.5 +/- 0.4
(stat) +/- 0.9 (syst) over the expectation from neutral meson decays. As
observed previously in S-Au collisions, the enhancement is most pronounced in
the invariant-mass region 300-700 MeV. For Pb-Au we find evidence for a strong
increase of the enhancement with centrality. In addition, we show that the
enhancement covers a wide range in transverse momentum, but is largest at the
lowest observed pt.Comment: 17 pages, 4 figures, submitted to Phys.Lett.
- …