8 research outputs found

    GaSbBi alloys and heterostructures: fabrication and properties

    Get PDF
    International audienceDilute bismuth (Bi) III-V alloys have recently attracted great attention, due to their properties of band-gap reduction and spin-orbit splitting. The incorporation of Bi into antimonide based III-V semiconductors is very attractive for the development of new optoelectronic devices working in the mid-infrared range (2-5 µm). However, due to its large size, Bi does not readily incorporate into III-V alloys and the epitaxy of III-V dilute bismides is thus very challenging. This book chapter presents the most recent developments in the epitaxy and characterization of GaSbBi alloys and heterostructures

    Molecular basis of pyruvate kinase deficiency among Tunisians: description of new mutations affecting coding and noncoding regions in the PKLR gene

    No full text
    International audienceINTRODUCTION:Pyruvate kinase (PK) deficiency is one of the most common hereditary nonspherocytic hemolytic anemias worldwide with clinical manifestations ranging from mild to severe hemolysis. However, investigation of this enzymopathy is lacking in Tunisia. We report here a pioneer investigation of PK deficiency among Tunisian cases referred to our laboratory for biological analysis of unknown cause of hemolytic anemia.METHODS:Two hundred and fifty-three patients with unknown cause of hemolytic anemia have been addressed to our laboratory in order to investigate for red blood cells genetic disorders. Red cell enzyme activities were measured by standard methods, and molecular analysis was performed by DNA sequencing. The interpretation of mutation effect and the molecular modeling were performed by using specific software.RESULTS:Six different PKLR mutations were found (c.966-1G>T; c.965+1G>A; c.721G>T; c.1163C>A; c.1456C>T; c.1537T>A), among which four are described for the first time. Genotype-phenotype correlations for the novel missense mutations were investigated by three-dimensional structure analysis.CONCLUSION:This study provides important data of PK deficiency among Tunisians. It might be followed by a large neonatal screening to determine the spectrum of PK mutations and identify potential deficient patients for an early medical follow-up

    Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia

    No full text
    International audienceNADPH oxidase, a multi-subunit protein consisting of cytosolic components and the membrane-bound heterodimer, plays an instrumental role in host defence mechanisms of phagocytes. Genetic deficiency of the enzymatic complex results in an inherited disorder, chronic granulomatous disease (CGD), which is characterized by an impaired phagocyte microbicidal activity. X-Linked (XL) CGD results from a mutation in the CYBB gene encoding the gp91phox subunit, while autosomal recessive (AR) CGD is associated with mutations in one of the NCF1, NCF2 and CYBA genes that encode the p47phox, p67phox and p22phox subunits, respectively. In the study reported here, we investigated genetic defects underlying CGD in 15 Tunisian patients from 14 unrelated families. Haplotype analyses and homozygosity mapping with microsatellite markers around known CGD genes assigned the genetic defect to NCF1 in four patients, to NCF2 in four patients and to CYBA in two patients. However, one family with two CGD patients seemed not to link the genetic defect to any known AR-CGD genes. Mutation screening identified two novel mutations in NCF2 and CYBA in addition to the recurrent mutation, Delta GT, in NCF1 and a splice site mutation previously reported in a North African patient. Our results revealed the genetic and mutational heterogeneity of the AR recessive form of CGD in Tunisia

    Bismuth-Related Nanostructures

    No full text
    Bismuth can modify surface reconstruction of III-V semiconductors and affect their growth conditions. Bismuth incorporation into III-Vs strongly changes their electronic properties. We present an overview of how the above Bi-related effects influence structural and optical properties of III-V nanostructures

    Molecular Beam Epitaxy Growth and Properties of GaAsBi and AlAsBi

    No full text
    GaAsBi alloys have been extensively studied in recent years, and the highest Bi concentration yet reached has been 22 %. Many photoelectric devices using this material have been produced, such as quantum well lasers, LEDs, solar cells, etc. The Bi incorporated into AlAs is expected to change the bandgap from indirect to direct. There are only a few theoretical reports on AlAsBi, however, experimental research results are seldom reported. In this chapter, we review the molecular beam epitaxy of GaAsBi and analyze the growth mechanism. Besides, we present the synthesis of AlAsBi by molecular beam epitaxy. The growth temperature, As/Ga flux ratio, Bi flux and the growth rate all have great influence on the Bi incorporation. Bismuth atoms play a surfactant role under As-rich conditions and an anti-surfactant role under Ga-rich conditions. Droplets tend to be formed on the surface of GaAsBi alloys due to the atomic size mismatch between Bi atoms and As atoms. The high-angle annular dark-field mode of scanning transmission electron microscopy images confirm Bi atoms cluster exsiting in GaAsBi films. Furthermore, we show the optical properties of GaAsBi and discuss the localized states induced by Bi. The photoluminescence wavelength of GaAsBi redshifts with increasing Bi concentration. The bandgap of GaAsBi is insensitive to temperature, which is important for developing un-cooled lasers. We discuss the influence of Bi incorporation on the electric and transport properties of GaAsBi. The types of dominant point defects induced by Bi incorporation are analyzed. The measurement results of the electron effective mass demonstrate that Bi incorporation not only changes the valence band but also has non-negligible influence on the conduction band in GaAsBi. For AlAsBi, we review the theoretical simulations and present the molecular beam epitaxy growth without substrate rotaion to investigate the influence of\ua0As/Al flux raio and the Bi flux on\ua0Bi incorporation
    corecore