38 research outputs found

    A Preliminary Study of Three-dimensional Sonographic Measurements of the Fetus

    Get PDF
    OBJECTIVES: This study was aimed at establishing an ideal method for performing three-dimensional measurements of the fetus in order to improve the estimation of fetal weight. METHODS: The study consisted of two phases. Phase I was a prospective cross-sectional study performed between 28 and 40 weeks\u27 gestation. The study population (n=110) comprised low-risk singleton pregnancies who underwent a routine third-trimester sonographic estimation of fetal weight. The purpose of this phase was to establish normal values for the fetal abdominal and head volumes throughout the third trimester. Phase II was a prospective study that included patients admitted for an elective cesarean section or for induction of labor between 38 and 41 weeks\u27 gestation (n=91). This phase of the study compared the actual birth weight to two- (2D) and three-dimensional (3D) measurements of the fetus. Conventional 2D ultrasound fetal biometry was performed measuring the biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur diaphysis length (FL). Volume estimates were computed utilizing Virtual Organ Computer-aided AnaLysis (VOCAL), and the correlation between measured volumes and actual neonatal weight was calculated. RESULTS: Overall, this longitudinal study consisted of 110 patients between 28 and 41 weeks\u27 gestation. Normal values were computed for the fetal abdomen and head volume throughout the third trimester. Ultrasound examination was performed within three days prior to delivery on 91 patients. A good correlation was found between birth weight and abdominal volume (r=0.77) and between birth weight and head volume (r=0.5). Correlation between bidimensional measurements and actual fetal weights was found to be comparable with previously published correlations. CONCLUSION: Volume measurements of the fetus may improve the accuracy of estimating fetal size. Additional studies using different volume measurement of the fetus are necessary

    Early and Late Postnatal Myocardial and Vascular Changes in a Protein Restriction Rat Model of Intrauterine Growth Restriction

    Get PDF
    Intrauterine growth restriction (IUGR) is a risk factor for cardiovascular disease in later life. Early structural and functional changes in the cardiovascular system after IUGR may contribute to its pathogenesis. We tested the hypothesis that IUGR leads to primary myocardial and vascular alterations before the onset of hypertension. A rat IUGR model of maternal protein restriction during gestation was used. Dams were fed low protein (LP; casein 8.4%) or isocaloric normal protein diet (NP; casein 17.2%). The offspring was reduced to six males per litter. Immunohistochemical and real-time PCR analyses were performed in myocardial and vascular tissue of neonates and animals at day 70 of life. In the aortas of newborn IUGR rats expression of connective tissue growth factor (CTGF) was induced 3.2-fold. At day 70 of life, the expression of collagen I was increased 5.6-fold in aortas of IUGR rats. In the hearts of neonate IUGR rats, cell proliferation was more prominent compared to controls. At day 70 the expression of osteopontin was induced 7.2-fold. A 3- to 7-fold increase in the expression of the profibrotic cytokines TGF-β and CTGF as well as of microfibrillar matrix molecules was observed. The myocardial expression and deposition of collagens was more prominent in IUGR animals compared to controls at day 70. In the low-protein diet model, IUGR leads to changes in the expression patterns of profibrotic genes and discrete structural abnormalities of vessels and hearts in adolescence, but, with the exception of CTGF, not as early as at the time of birth. Invasive and non-invasive blood pressure measurements confirmed that IUGR rats were normotensive at the time point investigated and that the changes observed occurred independently of an increased blood pressure. Hence, altered matrix composition of the vascular wall and the myocardium may predispose IUGR animals to cardiovascular disease later in life

    Parvovirus B19 in Pregnancy

    No full text

    Dynamics of pleural fluid effusion and chylothorax in the fetus and newborn: role of the lymphatic system.

    No full text
    Pleural fluid effusion particularly chylothorax is a relatively rare occurrence in the newborn, but when it occurs it is often life-threatening. In this article, we describe and illustrate the morphologic features of the visceral and parietal pleura including pleural lymphatics and the physiology and pathophysiology of pleural fluid balance. The role and function of the lymphatic system in controlling the volume and composition of pleural liquid are detailed and a conceptual scheme presented. Finally, the crucial role of inadequate lymphatic drainage (either functional overload from an imbalance in Starling forces or mechanical insufficiency from lymphatic dysplasia) is emphasized
    corecore