347,050 research outputs found

    Heavy quarkonium production: Nontrivial transition from pA to AA collisions

    Full text link
    Two novel QCD effects, double color filtering and mutual boosting of the saturation scales in colliding nuclei, affect the transparency of the nuclei for quark dipoles in comparison with proton-nucleus collisions. The former effect increases the survival probability of the dipoles, since color filtering in one nucleus makes the other one more transparent. The second effect acts in the opposite direction and is stronger, it makes the colliding nuclei more opaque than in the case of pA collisions. As a result of parton saturation in nuclei the effective scale is shifted upwards, what leads to an increase of the gluon density at small x. This in turn leads to a stronger transverse momentum broadening in AA compared with pA collisions, i.e. to an additional growth of the saturation momentum. Such a mutual boosting leads to a system of reciprocity equations, which result in a saturation scale, a few times higher in AA than in pA collisions at the energies of LHC. Since the dipole cross section is proportional to the saturation momentum squared, the nuclei become much more opaque for dipoles in AA than in pA collisions. For the same reason gluon shadowing turns out to be boosted to a larger magnitude compared with the product of the gluon shadowing factors in each of the colliding nuclei. All these effects make it more difficult to establish a baseline for anomalous J/Psi suppression in heavy ion collisions at high energies.Comment: 10 pages 8 figures. The accuracy of calculations is improve

    On the sine-Gordon--Thirring equivalence in the presence of a boundary

    Get PDF
    In this paper, the relationship between the sine-Gordon model with an integrable boundary condition and the Thirring model with boundary is discussed and the reflection RR-matrix for the massive Thirring model, which is related to the physical boundary parameters of the sine-Gordon model, is given. The relationship between the the boundary parameters and the two formal parameters appearing in the work of Ghoshal and Zamolodchikov is discussed.Comment: 14 pages, Latex, to be published in Int. J. Mod. Phys. A. Two references adde

    Quantum-mechanical description of in-medium fragmentation

    Full text link
    We present a quantum-mechanical description of quark-hadron fragmentation in a nuclear environment. It employs the path-integral formulation of quantum mechanics, which takes care of all phases and interferences, and which contains all relevant time scales, like production, coherence, formation, etc. The cross section includes the probability of pre-hadron (colorless dipole) production both inside and outside the medium. Moreover, it also includes inside-outside production, which is a typical quantum-mechanical interference effect (like twin-slit electron propagation). We observe a substantial suppression caused by the medium, even if the pre-hadron is produced outside the medium and no energy loss is involved. This important source of suppression is missed in the usual energy-loss scenario interpreting the effect of jet quenching observed in heavy ion collisions. This may be one of the reasons of a too large gluon density, reported by such analyzes.Comment: 20 pages, 7 figure

    Recent BES measurements and the hadronic contribution to the QED vacuum polarization

    Full text link
    We have updated our evaluation of the hadronic contribution to the running of the QED fine structure constant using the recent precise measurements of the e+e- annihilation at the center-of-mass (c.m.s.) energy region between 2.6 and 3.65 GeV performed by the BES collaboration. In the low energy region, around the rho resonance, we include the recent measurements from the BABAR, CDM-2, KLOE and SND collaborations. We obtain Delta alpha (5)_had (s) = 0.02750 +/- 0.00033 at s = m_Z^2.Comment: 3 pages, 1 figur

    Dynamic Monte Carlo Study of the Two-Dimensional Quantum XY Model

    Full text link
    We present a dynamic Monte Carlo study of the Kosterlitz-Thouless phase transition for the spin-1/2 quantum XY model in two dimensions. The short-time dynamic scaling behaviour is found and the dynamical exponent θ\theta, zz and the static exponent η\eta are determined at the transition temperature.Comment: 6 pages with 3 figure

    Beltrami-like fields created by baroclinic effect in two-fluid plasmas

    Full text link
    A theory of two-dimensional plasma evolution with Beltrami-like flow and field due to baroclinic effect has been presented. Particular solution of the nonlinear two-fluid equations is obtained. This simple model can explain the generation of magnetic field without assuming the presence of a seed in the system. Coupled field and flow naturally grow together. The theory has been applied to estimate B-field in laser-induced plasmas and the result is in good agreement with experimental values.Comment: 3 page
    • …
    corecore