21,040 research outputs found
Temporal and diffraction effects in entanglement creation in an optical cavity
A practical scheme for entanglement creation between distant atoms located
inside a single-mode optical cavity is discussed. We show that the degree of
entanglement and the time it takes for the entanglement to reach its optimum
value is a sensitive function the initial conditions and the position of the
atoms inside the cavity mode. It is found that the entangled properties of the
two atoms can readily be extracted from dynamics of a simple two-level system.
Effectively, we engineer two coupled qubits whose the dynamics are analogous to
that of a driven single two-level system. It is found that spatial variations
of the coupling constants actually help to create transient entanglement which
may appear on the time scale much longer than that predicted for the case of
equal coupling constants. When the atoms are initially prepared in an entangled
state, they may remain entangled for all times. We also find that the
entanglement exhibits an interesting phenomenon of diffraction when the the
atoms are located between the nodes and antinodes of the cavity mode. The
diffraction pattern of the entanglement varies with time and we explain this
effect in terms of the quantum property of complementarity, which is manifested
as a tradeoff between the knowledge of energy of the exchanged photon versus
the evolution time of the system.Comment: Phys. Rev. A75, 042307 (2007
Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks
We develop a method of spectroscopy that uses a weak static magnetic field to
enable direct optical excitation of forbidden electric-dipole transitions that
are otherwise prohibitively weak. The power of this scheme is demonstrated
using the important application of optical atomic clocks based on neutral atoms
confined to an optical lattice. The simple experimental implementation of this
method -- a single clock laser combined with a DC magnetic field-- relaxes
stringent requirements in current lattice-based clocks (e.g., magnetic field
shielding and light polarization), and could therefore expedite the realization
of the extraordinary performance level predicted for these clocks. We estimate
that a clock using alkaline earth-like atoms such as Yb could achieve a
fractional frequency uncertainty of well below 10^-17 for the metrologically
preferred even isotopes
Embedding Principal Component Analysis for Data Reductionin Structural Health Monitoring on Low-Cost IoT Gateways
Principal component analysis (PCA) is a powerful data reductionmethod for
Structural Health Monitoring. However, its computa-tional cost and data memory
footprint pose a significant challengewhen PCA has to run on limited capability
embedded platformsin low-cost IoT gateways. This paper presents a
memory-efficientparallel implementation of the streaming History PCA
algorithm.On our dataset, it achieves 10x compression factor and 59x
memoryreduction with less than 0.15 dB degradation in the
reconstructedsignal-to-noise ratio (RSNR) compared to standard PCA. More-over,
the algorithm benefits from parallelization on multiple cores,achieving a
maximum speedup of 4.8x on Samsung ARTIK 710
Sheath parameters for non-Debye plasmas: simulations and arc damage
This paper describes the surface environment of the dense plasma arcs that
damage rf accelerators, tokamaks and other high gradient structures. We
simulate the dense, non-ideal plasma sheath near a metallic surface using
Molecular Dynamics (MD) to evaluate sheaths in the non-Debye region for high
density, low temperature plasmas. We use direct two-component MD simulations
where the interactions between all electrons and ions are computed explicitly.
We find that the non-Debye sheath can be extrapolated from the Debye sheath
parameters with small corrections. We find that these parameters are roughly
consistent with previous PIC code estimates, pointing to densities in the range
. The high surface fields implied by these
results could produce field emission that would short the sheath and cause an
instability in the time evolution of the arc, and this mechanism could limit
the maximum density and surface field in the arc. These results also provide a
way of understanding how the "burn voltage" of an arc is generated, and the
relation between self sputtering and the burn voltage, while not well
understood, seems to be closely correlated. Using these results, and equating
surface tension and plasma pressure, it is possible to infer a range of plasma
densities and sheath potentials from SEM images of arc damage. We find that the
high density plasma these results imply and the level of plasma pressure they
would produce is consistent with arc damage on a scale 100 nm or less, in
examples where the liquid metal would cool before this structure would be lost.
We find that the sub-micron component of arc damage, the burn voltage, and
fluctuations in the visible light production of arcs may be the most direct
indicators of the parameters of the dense plasma arc, and the most useful
diagnostics of the mechanisms limiting gradients in accelerators.Comment: 8 pages, 16 figure
Electron-phonon interaction in the solid form of the smallest fullerene C
The electron-phonon coupling of a theoretically devised carbon phase made by
assembling the smallest fullerenes C is calculated from first
principles. The structure consists of C cages in an {\it fcc} lattice
interlinked by two bridging carbon atoms in the interstitial tetrahedral sites
({\it fcc}-C). The crystal is insulating but can be made metallic by
doping with interstitial alkali atoms. In the compound NaC the
calculated coupling constant is 0.28 eV, a value much larger
than in C, as expected from the larger curvature of C. On the
basis of the McMillan's formula, the calculated =1.12 and a
assumed in the range 0.3-0.1 a superconducting T in the range 15-55 K is
predicted.Comment: 7 page
A relativistic study of Bessel beams
We present a fully relativistic analysis of Bessel beams revealing some
noteworthy features that are not explicit in the standard description. It is
shown that there is a reference frame in which the field takes a particularly
simple form, the wave appearing to rotate in circles. The concepts of
polarization and angular momentum for Bessel beams is also reanalyzed.Comment: 11 pages, 2 fig
Langevin Trajectories between Fixed Concentrations
We consider the trajectories of particles diffusing between two infinite
baths of fixed concentrations connected by a channel, e.g. a protein channel of
a biological membrane. The steady state influx and efflux of Langevin
trajectories at the boundaries of a finite volume containing the channel and
parts of the two baths is replicated by termination of outgoing trajectories
and injection according to a residual phase space density. We present a
simulation scheme that maintains averaged fixed concentrations without creating
spurious boundary layers, consistent with the assumed physics
- …