36,858 research outputs found

    Upper Pseudogap Phase: Magnetic Characterizations

    Full text link
    It is proposed that the upper pseudogap phase (UPP) observed in the high-Tc cuprates correspond to the formation of spin singlet pairing under the bosonic resonating-valence-bond (RVB) description. We present a series of evidence in support of such a scenario based on the calculated magnetic properties including uniform spin susceptibility, spin-lattice and spin-echo relaxation rates, which consistently show that strong spin correlations start to develop upon entering the UPP, being enhanced around the momentum (\pi, \pi) while suppressed around (0, 0). The phase diagram in the parameter space of doping concentration, temperature, and external magnetic field, is obtained based on the the bosonic RVB theory. In particular, the competition between the Zeeman splitting and singlet pairing determines a simple relation between the "critical" magnetic field, H_{PG}, and characteristic temperature scale, T0, of the UPP. We also discuss the magnetic behavior in the lower pseudogap phase at a temperature Tv lower than T0, which is characterized by the formation of Cooper pair amplitude where the low-lying spin fluctuations get suppressed at both (0, 0) and (\pi, \pi). Properties of the UPP involving charge channels will be also briefly discussed.Comment: 11 pages, 5 figures, final version to appear in PR

    Multiple Superconducting Gaps, Anisotropic Spin Fluctuations and Spin-Orbit Coupling in Iron-Pnictides

    Full text link
    This article reviews the NMR and NQR studies on iron-based high-temperature superconductors by the IOP/Okayama group. It was found that the electron pairs in the superconducting state are in the spin-singlet state with multiple fully-opened energy gaps. The antiferromagnetic spin fluctuations in the normal state are found to be closely correlated with the superconductivity. Also the antiferromagnetic spin fluctuations are anisotropic in the spin space, which is different from the case in copper oxide superconductors. This anisotropy originates from the spin-orbit coupling and is an important reflection of the multiple-bands nature of this new class of superconductors.Comment: 20 pages, 16 figure

    On the nature of the lightest scalar resonances

    Full text link
    We briefly review the recent progresses in the new unitarization approach being developed by us. Especially we discuss the large NcN_c ππ\pi\pi scatterings by making use of the partial wave SS matrix parametrization form. We find that the σ\sigma pole may move to the negative real axis on the second sheet of the complex ss plane, therefore it raises the interesting question that this `σ\sigma' pole may be related to the σ\sigma in the linear σ\sigma model.Comment: Talk presented by Zheng at ``Quark Confinement and Hadron Spectroscopy VI'', 21--25 Sept. 2004, Cagliari, Italy. 3 pages with 2 figure

    Distinguishing RBL-like objects and XBL-like objects with the peak emission frequency of the overall energy spectrum

    Full text link
    We investigate quantitatively how the peak emission frequency of the overall energy spectrum is at work in distinguishing RBL-like and XBL-like objects. We employ the sample of Giommi et al. (1995) to study the distribution of BL Lacertae objects with various locations of the cutoff of the overall energy spectrum. We find that the sources with the cutoff located at lower frequency are indeed sited in the RBL region of the αroαox\alpha_{ro}-\alpha_{ox} plane, while those with the cutoff located at higher frequency are distributed in the XBL region. For a more quantitative study, we employ the BL Lacertae samples presented by Sambruna et al. (1996), where, the peak emission frequency, νp\nu _p, of each source is estimated by fitting the data with a parabolic function. In the plot of αrxlogνp\alpha_{rx}-\log \nu_p we find that, in the four different regions divided by the αrx=0.75\alpha_{rx}=0.75 line and the logνp=14.7\log \nu_p=14.7 line, all the RBL-like objects are inside the upper left region, while most XBL-like objects are within the lower right region. A few sources are located in the lower left region. No sources are in the upper right region. This result is rather quantitative. It provides an evidence supporting what Giommi et al. (1995) suggested: RBL-like and XBL-like objects can be distinguished by the difference of the peak emission frequency of the overall energy spectrum.Comment: 7 pages, 2 figure

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    Analyticity and the NcN_c counting rule of SS matrix poles

    Full text link
    By studying ππ\pi\pi scattering amplitudes in the large NcN_c limit, we clarify the NcN_c dependence of the SS matrix pole position. It is demonstrated that analyticity and the NcN_c counting rule exclude the existence of SS matrix poles with M,ΓO(1){\cal M}, \Gamma\sim O(1). Especially the properties of σ\sigma and f0(980)f_0(980) with respect to the 1/Nc1/N_c expansion are discussed. We point out that in general tetra-quark resonances do not exist.Comment: This paper replaces hep-ph/0412175. The latter is withdraw

    Transitions To the Long-Resident State in coupled chaotic oscillators

    Full text link
    The behaviors of coupled chaotic oscillators before complete synchronization were investigated. We report three phenomena: (1) The emergence of long-time residence of trajectories besides one of the saddle foci; (2) The tendency that orbits of the two oscillators get close becomes faster with increasing the coupling strength; (3) The diffusion of two oscillator's phase difference is first enhanced and then suppressed. There are exact correspondences among these phenomena. The mechanism of these correspondences is explored. These phenomena uncover the route to synchronization of coupled chaotic oscillators.Comment: 3 pages, 5 figure

    Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1x_{1-x}Fx_xFeAs

    Full text link
    A series of layered CeO1x_{1-x}Fx_xFeAs compounds with x=0 to 0.20 are synthesized by solid state reaction method. Similar to the LaOFeAs, the pure CeOFeAs shows a strong resistivity anomaly near 145 K, which was ascribed to the spin-density-wave instability. F-doping suppresses this instability and leads to the superconducting ground state. Most surprisingly, the superconducting transition temperature could reach as high as 41 K. The very high superconducting transition temperature strongly challenges the classic BCS theory based on the electron-phonon interaction. The very closeness of the superconducting phase to the spin-density-wave instability suggests that the magnetic fluctuations play a key role in the superconducting paring mechanism. The study also reveals that the Ce 4f electrons form local moments and ordered antiferromagnetically below 4 K, which could coexist with superconductivity.Comment: 4 pages, 5 figure
    corecore