78,680 research outputs found

    Topological Weyl and Node-Line Semimetals in Ferromagnetic Vanadium-Phosphorous-Oxide β\beta-V2_2OPO4_4 Compound

    Full text link
    We propose that the topological semimetal features can co-exist with ferromagnetic ground state in vanadium-phosphorous-oxide β\beta-V2_2OPO4_4 compound from first-principles calculations. In this magnetic system with inversion symmetry, the direction of magnetization is able to manipulate the symmetric protected band structures from a node-line type to a Weyl one in the presence of spin-orbital-coupling. The node-line semimetal phase is protected by the mirror symmetry with the reflection-invariant plane perpendicular to magnetic order. Within mirror symmetry breaking due to the magnetization along other directions, the gapless node-line loop will degenerate to only one pair of Weyl points protected by the rotational symmetry along the magnetic axis, which are largely separated in momentum space. Such Weyl semimetal phase provides a nice candidate with the minimum number of Weyl points in a condensed matter system. The results of surface band calculations confirm the non-trivial topology of this proposed compound. This findings provide a realistic candidate for the investigation of topological semimetals with time-reversal symmetry breaking, particularly towards the realization of quantum anomalous Hall effect in Weyl semimetals.Comment: 5 pages, 4 figure

    General response theory of topologically stable Fermi points and its implications for disordered cases

    Get PDF
    We develop a general response theory of gapless Fermi points with nontrivial topological charges for gauge and nonlinear sigma fields, which asserts that the topological character of the Fermi points is embodied as the terms with discrete coefficients proportional to the corresponding topological charges. Applying the theory to the effective non-linear sigma models for topological Fermi points with disorders in the framework of replica approach, we derive rigorously the Wess-Zumino terms with the topological charges being their levels in the two complex symmetry classes of A and AIII. Intriguingly, two nontrivial examples of quadratic Fermi points with the topological charge `2' are respectively illustrated for the classes A and AIII. We also address a qualitative connection of topological charges of Fermi points in the real symmetry classes to the topological terms in the non-linear sigma models, based on the one-to-one classification correspondence.Comment: 8 pages and 2 figures, revised version with appendi

    Topological Classification and Stability of Fermi Surfaces

    Get PDF
    In the framework of the Cartan classification of Hamiltonians, a kind of topological classification of Fermi surfaces is established in terms of topological charges. The topological charge of a Fermi surface depends on its codimension and the class to which its Hamiltonian belongs. It is revealed that six types of topological charges exist, and they form two groups with respect to the chiral symmetry, with each group consisting of one original charge and two descendants. It is these nontrivial topological charges which lead to the robust topological protection of the corresponding Fermi surfaces against perturbations that preserve discrete symmetries.Comment: 5 pages, published version in PR

    Revealing a topological connection between stabilities of Fermi surfaces and topological insulators/superconductors

    Get PDF
    A topology-intrinsic connection between the stabilities of Fermi surfaces (FSs) and topological insulators/superconductors (TIs/TSCs) is revealed. In particular, a one-to-one relation between the topological types of FSs and TIs/TSCs is rigorously derived; combining it with a well-established topological theory of FSs, we produce a complete table illustrating precisely topological types of all TIs/TSCs, while a valid part of it was postulated before. Moreover, we propose and prove a general index theorem that relates the topological charge of FSs on the natural boundary of a strong TI/TSC to its bulk topological number. Implications of the general index theorem on the boundary quasi-particles are also addressed.Comment: 5 pages with Supplemental Material, more content is adde

    Obvious enhancement of the total reaction cross sections for 27,28^{27,28}P with 28^{28}Si target and the possible relavent mechanisms

    Full text link
    The reaction cross sections of 27,28^{27,28}P and the corresponding isotones on Si target were measured at intermediate energies. The measured reaction cross sections of the N=12 and 13 isotones show an abrupt increase at % Z=15. The experimental results for the isotones with Z≤14Z\leq 14 as well as % ^{28}P can be well described by the modified Glauber theory of the optical limit approach. The enhancement of the reaction cross section for 28^{28}P could be explained in the modified Glauber theory with an enlarged core. Theoretical analysis with the modified Glauber theory of the optical limit and few-body approaches underpredicted the experimental data of 27^{27}P. Our theoretical analysis shows that an enlarged core together with proton halo are probably the mechanism responsible for the enhancement of the cross sections for the reaction of 27^{27}P+28^{28}Si.Comment: 16 pages, 5 figures, to be published in Phys.Rev.
    • …
    corecore