19,566 research outputs found

    Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response

    Full text link
    The cosmic strings(CSs) may be one important source of gravitational waves(GWs), and it has been intensively studied due to its special properties such as the cylindrical symmetry. The CSs would generate not only usual continuous GW, but also impulsive GW that brings more concentrated energy and consists of different GW components broadly covering low-, intermediate- and high-frequency bands simultaneously. These features might underlie interesting electromagnetic(EM) response to these GWs generated by the CSs. In this paper, with novel results and effects, we firstly calculate the analytical solutions of perturbed EM fields caused by interaction between impulsive cylindrical GWs (would be one of possible forms emitted from CSs) and background celestial high magnetic fields or widespread cosmological background magnetic fields, by using rigorous Einstein - Rosen metric. Results show: perturbed EM fields are also in the impulsive form accordant to the GW pulse, and asymptotic behaviors of the perturbed EM fields are fully consistent with the asymptotic behaviors of the energy density, energy flux density and Riemann curvature tensor of corresponding impulsive cylindrical GWs. The analytical solutions naturally give rise to the accumulation effect which is proportional to the term of distance^1/2, and based on it, we for the first time predict potentially observable effects in region of the Earth caused by the EM response to GWs from the CSs.Comment: 34 pages, 12 figure

    Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows

    Get PDF
    In this paper, an improved three-dimensional color-gradient lattice Boltzmann (LB) model is proposed for simulating immiscible multiphase flows. Compared with the previous three-dimensional color-gradient LB models, which suffer from the lack of Galilean invariance and considerable numerical errors in many cases owing to the error terms in the recovered macroscopic equations, the present model eliminates the error terms and therefore improves the numerical accuracy and enhances the Galilean invariance. To validate the proposed model, numerical simulation are performed. First, the test of a moving droplet in a uniform flow field is employed to verify the Galilean invariance of the improved model. Subsequently, numerical simulations are carried out for the layered two-phase flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using the improved model, the numerical accuracy can be significantly improved in comparison with the color-gradient LB model without the improvements. Finally, the capability of the improved color-gradient LB model for simulating dynamic multiphase flows at a relatively large density ratio is demonstrated via the simulation of droplet impact on a solid surface.Comment: 9 Figure

    Intrinsic Percolative Superconductivity in Heavily Overdoped High Temperature Superconductors

    Full text link
    Magnetic measurements on heavily overdoped La2−xSrxCuO4La_{2-x}Sr_xCuO_4, Tl2Ba2CuO6Tl_2Ba_2CuO_6, Bi2Sr2CuO6Bi_2Sr_2CuO_6 and Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8 single crystals reveal a new type magnetization hysteresis loops characterized by the vanishing of usual central peak near zero field. Since this effect has been observed in various systems with very different structural details, it reflects probably a generic behavior for all high temperature superconductors. This easy penetration of magnetic flux can be understood in the picture of percolative superconductivity due to the inhomogeneous electronic state in heavily overdoped regime.Comment: 4 pages, 5 figure
    • …
    corecore