33,531 research outputs found

    Geometric phase and phase diagram for non-Hermitian quantum XY model

    Full text link
    We study the geometric phase for the ground state of a generalized one-dimensional non-Hermitian quantum XY model, which has transverse-field-dependent intrinsic rotation-time reversal symmetry. Based on the exact solution, this model is shown to have full real spectrum in multiple regions for the finite size system. The result indicates that the phase diagram or exceptional boundary, which separates the unbroken and broken symmetry regions corresponds to the divergence of the Berry curvature. The scaling behaviors of the groundstate energy and Berry curvature are obtained in an analytical manner for a concrete system.Comment: 6 pages, 3 figure

    Momentum-independent reflectionless transmission in the non-Hermitian time-reversal symmetric system

    Full text link
    We theoretically study the non-Hermitian systems, the non-Hermiticity of which arises from the unequal hopping amplitude (UHA) dimers. The distinguishing features of these models are that they have full real spectra if all of the eigenvectors are time-reversal (T) symmetric rather than parity-time-reversal (PT) symmetric, and that their Hermitian counterparts are shown to be an experimentally accessible system, which have the same topological structures as that of the original ones but modulated hopping amplitudes within the unbroken region. Under the reflectionless transmission condition, the scattering behavior of momentum-independent reflectionless transmission (RT) can be achieved in the concerned non-Hermitian system. This peculiar feature indicates that, for a certain class of non-Hermitian systems with a balanced combination of the RT dimers, the defects can appear fully invisible to an outside observer.Comment: 9 pages, 4 figures. arXiv admin note: text overlap with arXiv:1008.5306 by other author

    Non-Hermitian anisotropic XY model with intrinsic rotation-time reversal symmetry

    Full text link
    We systematically study the non-Hermitian version of the one-dimensional anisotropic XY model, which in its original form, is a unique exactly solvable quantum spin model for understanding the quantum phase transition. The distinguishing features of this model are that it has full real spectrum if all the eigenvectors are intrinsic rotation-time reversal (RT) symmetric rather than parity-time reversal (PT) symmetric, and that its Hermitian counterpart is shown approximately to be an experimentally accessible system, an isotropic XY spin chain with nearest neighbor coupling. Based on the exact solution, exceptional points which separated the unbroken and broken symmetry regions are obtained and lie on a hyperbola in the thermodynamic limit. It provides a nice paradigm to elucidate the complex quantum mechanics theory for a quantum spin system.Comment: 7 pages, 3 figure

    Partial topological Zak phase and dynamical confinement in non-Hermitian bipartite system

    Full text link
    Unlike a Chern number in 22D and 33D topological system, Zak phase takes a subtle role to characterize the topological phase in 11D. On the one hand, it is not a gauge invariant, on the other hand, the Zak phase difference between two quantum phases can be used to identify the topological phase transitions. A non-Hermitian system may inherit some characters of a Hermitian system, such as entirely real spectrum, unitary evolution, topological energy band, etc. In this paper, we study the influence of non-Hermitian term on the Zak phase for a class of non-Hermitian systems. We show exactly that the real part of the Zak phase remains unchanged in a bipartite lattice. In a concrete example, 11D Su-Schrieffer-Heeger (SSH) model, we find that the real part of Zak phase can be obtained by an adiabatic process. To demonstrate this finding, we investigate a scattering problem for a time-dependent scattering center, which is a magnetic-flux-driven non-Hermitian SSH ring. Owing to the nature of the Zak phase, the intriguing features of this design are the wave-vector independence and allow two distinct behaviors, perfect transmission or confinement, depending on the timing of a flux impulse threading the ring. When the flux is added during a wavepacket travelling within the ring, the wavepacket is confined in the scatter partially. Otherwise, it exhibits perfect transmission through the scatter. Our finding extends the understanding and broaden the possible application of geometric phase in a non-Hermitian system.Comment: 11 pages, 7 figure

    EPR pairing dynamics in Hubbard model with resonant UU

    Full text link
    We study the dynamics of the collision between two fermions in Hubbard model with on-site interaction strength UU. The exact solution shows that the scattering matrix for two-wavepacket collision is separable into two independent parts, operating on spatial and spin degrees of freedom, respectively. The S-matrix for spin configuration is equivalent to that of Heisenberg-type pulsed interaction with the strength depending on UU and relative group velocity Ο…r\upsilon _{r}. This can be applied to create distant EPR pair, through a collision process for two fermions with opposite spins in the case of βˆ£Ο…r/U∣=1\left\vert \upsilon _{r}/U\right\vert =1,\ without the need for temporal control and measurement process. Multiple collision process for many particles is also discussed.Comment: 7 pages, 3 figure

    Asymmetric transmission through a flux-controlled non-Hermitian scattering center

    Full text link
    We study the possibility of asymmetric transmission induced by a non-Hermitian scattering center embedded in a one-dimensional waveguide, motivated by the aim of realizing quantum diode in a non-Hermitian system. It is shown that a PT\mathcal{PT} symmetric non-Hermitian scattering center always has symmetric transmission although the dynamics within the isolated center can be unidirectional, especially at its exceptional point. We propose a concrete scheme based on a flux-controlled non-Hermitian scattering center, which comprises a non-Hermitian triangular ring threaded by an Aharonov-Bohm flux. The analytical solution shows that such a complex scattering center acts as a diode at the resonant energy level of the spectral singularity, exhibiting perfect unidirectionality of the transmission. The connections between the phenomena of the asymmetric transmission and reflectionless absorption are also discussed.Comment: 6 pages, 5 figure

    Dynamical topological invariant for non-Hermitian Rice-Mele model

    Full text link
    We study a non-Hermitian Rice-Mele model without breaking time-reversal symmetry, with the non-Hermiticity arising from imbalanced hopping rates. The Berry connection, Berry curvature and Chern number are introduced in the context of biorthonormal inner product. It is shown that for a bulk system, although the Berry connection can be complex numbers, the Chern number is still quantized, as topological invariant. For an opened chain system, the mid-gap edge modes are obtained exactly, obeying the bulk-edge correspondence. Furthermore, we also introduce a local current in the context of biorthonormal inner product to measure the pumping charge generated by a cyclic adiabatic evolution. Analytical analysis and numerical simulation of the time evolution of the mid-gap states show that the pumping charge can be a dynamical topological invariant in correspondence with the Chern number. It indicates that the geometric concepts for Hermitian topological insulator can be extended to the non-Hermitian regime

    Amplitude control of a quantum state in a non-Hermitian Rice-Mele model driven by an external field

    Full text link
    In the Hermitian regime, a Berry phase is always the real number. It may be imaginary for a non-Hermitian system, which leads to amplitude amplification or attenuation of an evolved quantum state. We study the dynamics of the non-Hermitian Rice-Mele model driven by a time-dependent external field. The exact results show that it can have full real spectrum for any value of the field. Several rigorous results are presented for the Berry phase with respect to the varying field. We show that the Berry phase is the same complex constant for any initial state in a single sub-band. Numerical simulation indicates that the amplitude control of a state can be accomplished by a quasi-adiabatic process within a short time

    Non-Hermitian description of the dynamics of inter-chain pair tunnelling

    Full text link
    We study inter-chain pair tunnelling dynamics based on an exact two-particle solution for a two-leg ladder. We show that the Hermitian Hamiltonian shares a common two-particle eigenstate with a corresponding non-Hermitian Hubbard Hamiltonian in which the non-Hermiticity arises from an on-site interaction of imaginary strength. Our results provides that the dynamic processes of two-particle collision and across-legs tunnelling are well described by the effective non-Hermitian Hubbard Hamiltonian based on the eigenstate equivalence. We also find that any common eigenstate is always associated with the emergence of spectral singularity in the non-Hermitian Hubbard model. This result is valid for both Bose and Fermi systems and provides a clear physical implication of the non-Hermitian Hubbard model.Comment: 10 pages, 4 figure

    Dynamical signature of moire pattern in non-Hermitian ladder

    Full text link
    We study the dynamical behavior of a non-Hermitian moire superlattice system, which consists of two-coupled SSH chains with staggered imaginary on-site potentials. There are two main spatial regions, in which systems are in unbroken symmetric phases with fully real spectrum, appearing periodically along the ladder. We show that the two quantum phases are dimerized and tetramerized, which determine the distinct dynamical behaviors. Dirac probability can oscillate periodically, increase quadratically and increase exponentially, which correspond to the unbroken phase, exceptional point and the broken phase of the tetramerized region. In comparison, the Dirac probability can exhibit high-frequency oscillation in the dimerized region. These phenomena demonstrate the dynamical signature and provide insightful information of the moire pattern in the non-Hermitian regime.Comment: 10 pages, 5 figure
    • …
    corecore