108,333 research outputs found
Dispelling the Anthropic Principle from the Dimensionality Arguments
It is shown that in d=11 supergravity, under a very reasonable ansatz, the
nearly flat spacetime in which we are living must be 4-dimensional without
appealing to the Anthropic Principle. Can we dispel the Anthropic Principle
completely from cosmology?Comment: 7 pages, Essa
Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect
The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating
Kinnersley black hole is investigated by using a method of the generalized
tortoise coordinate transformation. Both the location and temperature of the
event horizon depend on the time and on the angles. They coincide with previous
results, but the thermal radiation spectrum of massless spinor particles
displays a kind of spin-acceleration coupling effect.Comment: 8 pages, no figure, revtex 4.0, revisted version with typesetting
errors and misprint correcte
Hawking Radiation of Dirac Particles in an Arbitrarily Accelerating Kinnersley Black Hole
Quantum thermal effect of Dirac particles in an arbitrarily accelerating
Kinnersley black hole is investigated by using the method of generalized
tortoise coordinate transformation. Both the location and the temperature of
the event horizon depend on the advanced time and the angles. The Hawking
thermal radiation spectrum of Dirac particles contains a new term which
represents the interaction between particles with spin and black holes with
acceleration. This spin-acceleration coupling effect is absent from the thermal
radiation spectrum of scalar particles.Comment: Revtex, 12pt, 16 pages, no figure, to appear in Gen. Rel. Grav. 34
(2002) N0.
Exact Solutions to Sourceless Charged Massive Scalar Field Equation on Kerr-Newman Background
The separated radial part of a sourceless massive complex scalar field
equation on the Kerr-Newman black hole background is shown to be a generalized
spin-weighted spheroidal wave equation of imaginary number order. While the
separated angular part is an ordinary spheroidal wave equation. General exact
solutions in integral forms and in power series expansion as well as several
special solutions with physical interest are given for the radial equation in
the non-extreme case. In the extreme case, power series solution to the radial
equation is briefly studied. Recurrence relations between coefficients in power
series expansion of general solutions and connection between the radial
equation are discussed in both cases.Comment: 22 Pages, in LaTex, no figure, to appear in J. Math. Phy
Authorization and access control of application data in Workflow systems
Workflow Management Systems (WfMSs) are used to support the modeling and coordinated execution of business processes within an organization or across organizational boundaries. Although some research efforts have addressed requirements for authorization and access control for workflow systems, little attention has been paid to the requirements as they apply to application data accessed or managed by WfMSs. In this paper, we discuss key access control requirements for application data in workflow applications using examples from the healthcare domain, introduce a classification of application data used in workflow systems by analyzing their sources, and then propose a comprehensive data authorization and access control mechanism for WfMSs. This involves four aspects: role, task, process instance-based user group, and data content. For implementation, a predicate-based access control method is used. We believe that the proposed model is applicable to workflow applications and WfMSs with diverse access control requirements
On practical design for joint distributed source and network coding
This paper considers the problem of communicating correlated information from multiple source nodes over a network of noiseless channels to multiple destination nodes, where each destination node wants to recover all sources. The problem involves a joint consideration of distributed compression and network information relaying. Although the optimal rate region has been theoretically characterized, it was not clear how to design practical communication schemes with low complexity. This work provides a partial solution to this problem by proposing a low-complexity scheme for the special case with two sources whose correlation is characterized by a binary symmetric channel. Our scheme is based on a careful combination of linear syndrome-based Slepian-Wolf coding and random linear mixing (network coding). It is in general suboptimal; however, its low complexity and robustness to network dynamics make it suitable for practical implementation
Level sequence and splitting identification of closely-spaced energy levels by angle-resolved analysis of the fluorescence light
The angular distribution and linear polarization of the fluorescence light
following the resonant photoexcitation is investigated within the framework of
the density matrix and second-order perturbation theory. Emphasis has been
placed on "signatures" for determining the level sequence and splitting of
intermediate (partially) overlapping resonances, if analyzed as a function of
the photon energy of the incident light. Detailed computations within the
multiconfiguration Dirac-Fock method have been performed especially for the
photoexcitation and subsequent fluorescence emission of atomic sodium. A
remarkably strong dependence of the angular distribution and linear
polarization of the fluorescence emission is found upon the level
sequence and splitting of the intermediate overlapping resonances owing to their finite lifetime
(linewidth). We therefore suggest that accurate measurements of the angular
distribution and linear polarization might help identify the sequence and small
splittings of closely-spaced energy levels, even if they can not be
spectroscopically resolved.Comment: 9 pages, 7 figure
Recommended from our members
Bioinspired Multifunctional Anti-icing Hydrogel
The recent anti-icing strategies in the state of the art mainly focused on three aspects: inhibiting ice nucleation, preventing ice propagation, and decreasing ice adhesion strength. However, it is has proved difficult to prevent ice nucleation and propagation while decreasing adhesion simultaneously, due to their highly distinct, even contradictory design principles. In nature, anti-freeze proteins (AFPs) offer a prime example of multifunctional integrated anti-icing materials that excel in all three key aspects of the anti-icing process simultaneously by tuning the structures and dynamics of interfacial water. Here, inspired by biological AFPs, we successfully created a multifunctional anti-icing material based on polydimethylsiloxane-grafted polyelectrolyte hydrogel that can tackle all three aspects of the anti-icing process simultaneously. The simplicity, mechanical durability, and versatility of these smooth hydrogel surfaces make it a promising option for a wide range of anti-icing applications
- âŠ