91,667 research outputs found

    Emergent patterns in a spin-orbit coupled spin-2 Bose-Einstein condensate

    Full text link
    The ground-state phases of a spin-orbit (SO) coupled atomic spin-2 Bose-Einstein condensate (BEC) are studied. Interesting density patterns spontaneously formed are widespread due to the competition between SO coupling and spin-dependent interactions like in a SO coupled spin-1 condensate. Unlike the case of spin-1 condensates, which are characterized by either ferromagnetic or polar phase in the absence of SO, spin-2 condensates can take a cyclic phase, where we find the patterns formed due to SO are square or triangular in their spin component densities for axial symmetric SO interaction. Both patterns are found to continuously evolve into striped forms with increased asymmetry of the SO coupling.Comment: 5 pages, 5 figure

    Spontaneously axisymmetry breaking phase in a binary mixture of spinor Bose-Einstein condensates

    Full text link
    We study the ground state phases for a mixture of two atomic spin-1 Bose-Einstein condensates (BECs) in the presence of a weak magnetic (B-) field. The ground state is found to contain a broken-axisymmetry (BA) phase due to competitions among intra- and inter-species spin exchange interactions and the linear Zeeman shifts. This is in contrast to the case of a single species spin- 1 condensate, where the axisymmetry breaking results from competitions among the linear and quadratic Zeeman shifts and the intra-species ferromagnetic interaction. All other remaining ground state phases for the mixture are found to preserve axisymmetry. We further elaborate on the ground state phase diagram and calculate their Bogoliubov excitation spectra. For the BA phase, there exist three Goldstone modes attempting to restore the broken U(1) and SO(2) symmetries.Comment: 10 pages, 7 figure

    Artificial Light Harvesting by Dimerized Mobius Ring

    Full text link
    We theoretically study artificial light harvesting by a dimerized Mobius ring. When the donors in the ring are dimerized, the energies of the donor ring are splitted into two sub-bands. Because of the nontrivial Mobius boundary condition, both the photon and acceptor are coupled to all collectiveexcitation modes in the donor ring. Therefore, the quantum dynamics in the light harvesting are subtly influenced by the dimerization in the Mobius ring. It is discovered that energy transfer is more efficient in a dimerized ring than that in an equally-spaced ring. This discovery is also confirmed by the calculation with the perturbation theory, which is equivalent to the Wigner-Weisskopf approximation. Our findings may be benificial to the optimal design of artificial light harvesting.Comment: 13 pages, 6 figure

    Spin squeezing: transforming one-axis-twisting into two-axis-twisting

    Full text link
    Squeezed spin states possess unique quantum correlation or entanglement that are of significant promises for advancing quantum information processing and quantum metrology. In recent back to back publications [C. Gross \textit{et al, Nature} \textbf{464}, 1165 (2010) and Max F. Riedel \textit{et al, Nature} \textbf{464}, 1170 (2010)], reduced spin fluctuations are observed leading to spin squeezing at -8.2dB and -2.5dB respectively in two-component atomic condensates exhibiting one-axis-twisting interactions (OAT). The noise reduction limit for the OAT interaction scales as 1/N2/3\propto 1/{N^{2/3}}, which for a condensate with N103N\sim 10^3 atoms, is about 100 times below standard quantum limit. We present a scheme using repeated Rabi pulses capable of transforming the OAT spin squeezing into the two-axis-twisting type, leading to Heisenberg limited noise reduction 1/N\propto 1/N, or an extra 10-fold improvement for N103N\sim 10^3.Comment: 4 pages, 3 figure

    Quantum entangled ground states of two spinor Bose-Einstein condensates

    Full text link
    We revisit in detail the non-mean-field ground-state phase diagram for a binary mixture of spin-1 Bose-Einstein condensates including quantum fluctuations. The non-commuting terms in the spin-dependent Hamiltonian under single spatial mode approximation make it difficult to obtain exact eigenstates. Utilizing the spin z-component conservation and the total spin angular momentum conservation, we numerically derive the information of the building blocks and evaluate von Neumann entropy to quantify the ground states. The mean-field phase boundaries are found to remain largely intact, yet the ground states show fragmented and entangled behaviors within large parameter spaces of interspecies spin-exchange and singlet-pairing interactions.Comment: 7 pages, 5 figure

    Searching for high-KK isomers in the proton-rich A80A\sim80 mass region

    Get PDF
    Configuration-constrained potential-energy-surface calculations have been performed to investigate the KK isomerism in the proton-rich A80A\sim80 mass region. An abundance of high-KK states are predicted. These high-KK states arise from two and four-quasi-particle excitations, with Kπ=8+K^{\pi}=8^{+} and Kπ=16+K^{\pi}=16^{+}, respectively. Their excitation energies are comparatively low, making them good candidates for long-lived isomers. Since most nuclei under studies are prolate spheroids in their ground states, the oblate shapes of the predicted high-KK states may indicate a combination of KK isomerism and shape isomerism

    Ferromagnetic Type-II Weyl Semimetal in Pyrite Chromium Dioxide

    Full text link
    Magnetic topological materials have recently drawn significant importance and interest, due to their topologically nontrivial electronic structure within spontaneous magnetic moments and band inversion. Based on first-principles calculations, we propose that chromium dioxide, in its ferromagnetic pyrite structure, can realize one pair of type-II Weyl points between the NNth and (N+1)(N+1)th bands, where NN is the total number of valence electrons per unit cell. Other Weyl points between the (N1)(N-1)th and NNth bands also appear close to the Fermi level due to the complex topological electronic band structure. The symmetry analysis elucidates that the Weyl points arise from a triply-degenerate point splitting due to the mirror reflection symmetry broken in the presence of spin-orbital coupling, which is equivalent to an applied magnetic field along the direction of magnetization. The Weyl points located on the magnetic axis are protected by the three-fold rotational symmetry. The corresponding Fermi arcs projected on both (001) and (110) surfaces are calculated as well and observed clearly. This finding opens a wide range of possible experimental realizations of type-II Weyl fermions in a system with time-reversal breaking.Comment: 8 pages, 5 figure
    corecore