39,880 research outputs found
General covariant geometric momentum, gauge potential and a Dirac fermion on a two-dimensional sphere
For a particle that is constrained on an ()-dimensional ()
curved surface, the Cartesian components of its momentum in -dimensional
flat space is believed to offer a proper form of momentum for the particle on
the surface, which is called the geometric momentum as it depends on the mean
curvature. Once the momentum is made general covariance, the spin connection
part can be interpreted as a gauge potential. The present study consists in two
parts, the first is a discussion of the general framework for the general
covariant geometric momentum. The second is devoted to a study of a Dirac
fermion on a two-dimensional sphere and we show that there is the generalized
total angular momentum whose three cartesian components form the
algebra, obtained before by consideration of dynamics of the particle, and we
demonstrate that there is no curvature-induced geometric potential for the
fermion.Comment: 8 pages, no figure. Presentation improve
Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case
In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation
Event-based recursive distributed filtering over wireless sensor networks
In this technical note, the distributed filtering problem is investigated for a class of discrete time-varying systems with an event-based communication mechanism. Each intelligent sensor node transmits the data to its neighbors only when the local innovation violates a predetermined Send-on-Delta (SoD) data transmission condition. The aim of the proposed problem is to construct a distributed filter for each sensor node subject to sporadic communications over wireless networks. In terms of an event indicator variable, the triggering information is utilized so as to reduce the conservatism in the filter analysis. An upper bound for the filtering error covariance is obtained in form of Riccati-like difference equations by utilizing the inductive method. Subsequently, such an upper bound is minimized by appropriately designing the filter parameters iteratively, where a novel matrix simplification technique is developed to handle the challenges resulting from the sparseness of the sensor network topology and filter structure preserving issues. The effectiveness of the proposed strategy is illustrated by a numerical simulation.This work is supported by National Basic Research Program of China (973 Program) under Grant 2010CB731800, National Natural Science Foundation of China under Grants 61210012, 61290324, 61473163 and 61273156, and Jiangsu Provincial Key Laboratory of E-business at Nanjing University of Jiangsu and Economics of China under Grant JSEB201301
Analyticity and the counting rule of matrix poles
By studying scattering amplitudes in the large limit, we
clarify the dependence of the matrix pole position. It is
demonstrated that analyticity and the counting rule exclude the existence
of matrix poles with . Especially the properties
of and with respect to the expansion are discussed.
We point out that in general tetra-quark resonances do not exist.Comment: This paper replaces hep-ph/0412175. The latter is withdraw
Is the meson a dynamically generated resonance? -- a lesson learned from the O(N) model and beyond
O(N) linear model is solvable in the large limit and hence
provides a useful theoretical laboratory to test various unitarization
approximations. We find that the large limit and the
limit do not commute. In order to get the correct large spectrum one has
to firstly take the large limit. We argue that the meson may
not be described as generated dynamically. On the contrary, it is most
appropriately described at the same level as the pions, i.e, both appear
explicitly in the effective lagrangian. Actually it is very likely the
meson responsible for the spontaneous chiral symmetry breaking in a lagrangian
with linearly realized chiral symmetry.Comment: 15 pages, 3 figurs; references added; discussions slightly modified;
revised version accepted by IJMP
On the nature of the lightest scalar resonances
We briefly review the recent progresses in the new unitarization approach
being developed by us. Especially we discuss the large
scatterings by making use of the partial wave matrix parametrization form.
We find that the pole may move to the negative real axis on the second
sheet of the complex plane, therefore it raises the interesting question
that this `' pole may be related to the in the linear
model.Comment: Talk presented by Zheng at ``Quark Confinement and Hadron
Spectroscopy VI'', 21--25 Sept. 2004, Cagliari, Italy. 3 pages with 2 figure
An effective ant-colony based routing algorithm for mobile ad-hoc network
An effective Ant-Colony based routing algorithm for mobile ad-hoc network is proposed in this paper. In this routing scheme, each path is marked by path grade, which is calculated from the combination of multiple constrained QoS parameters such as the time delay, packet loss rate and bandwidth, etc. packet routing is decided by the path grade and the queue buffer length of the node. The advantage of this scheme is that it can effectively improve the packet delivery ratio and reduce the end-to-end delay. The simulation results show that our proposed algorithm can improve the packet delivery ratio by 9%-22% and the end-to-end delay can be reduced by 14%-16% as compared with the conventional QAODV and ARA routing schemes
- …