58,153 research outputs found
The effect of piston bowl temperature on diesel exhaust emissions
In modern, high-speed, direct injection diesel engines for passenger vehicles, there is extensive impingement of the fuel sprays on to the piston bowl walls. Recent trends towards smaller engine sizes, equipped with high-pressure common-rail fuel injection systems, have tended to increase the spray/piston wall interaction. This paper describes tests carried out in a high-speed direct injection automotive diesel engine, during which the temperature of the piston was increased in a controlled manner between 189 and 227 degrees C while being continuously monitored. The aim of the work was to quantify the effects of piston temperature on pollutant exhaust emissions. The results show a significant reduction in unburned hydrocarbon emission, a significant increase in smoke emission, and no significant change in the emission of oxides of nitrogen. The increase in smoke emission cannot be ascribed to changes in the engine volumetric efficiency or air-fuel ratio. The paper demonstrates that fuel spray deposition on the piston surface was in the form of a thin film that did not experience bulk boiling. A number of suggestions are put forward to help explain the observed changes in exhaust emissions with increasing piston temperature
Characteristics of homogeneous charge compression ignition (HCCI) combustion and emissions of n-heptane
This paper reports the outcome from a systematic investigation carried out on HCCI (Homogeneous Charge Compression Ignition) combustion of a diesel type fuel. The n heptane was chosen in this study to study the premixed diesel HCCI combustion characteristics with port fuel injection. Measurements were carried out in a single-cylinder, 4-stroke and variable compression ratio engine. Premixed n-heptane/air/EGR mixture was introduced into the cylinder by a port fuel injector and an external EGR system. The operating regions with regard to Air/Fuel ratio and EGR rate were established for different compression ratios and intake temperatures. The effects of compression ratios, intake temperatures, Air/Fuel ratios and EGR rates on knock limit, auto-ignition timing, combustion rate, IMEP, and engine-out emissions, such as NOx, CO, and unburned HC, were analysed. The results have shown HCCI combustion of n-heptane could be implemented without intake charge heating with a typical diesel engine compression ratio. The attainable HCCI operating region was mainly limited by the knock limit, misfir, and low IMEP respectively. Higher intake temperature or compression ratio could extend the misfire limit of the HCCI operation at low load but they would reduce the maximum IMEP limit at higher load conditions. Compared with conventional diesel combustion, HCCI combustion lead to extremely low NOx emissions ( less than 5 ppm) and smoke free exhaust. But HCCI diesel combustion was found to produce higher HC and CO emissions. An increase in intake temperature or compression ratio helped to reduce HC and CO emissions.
Visualization of the homogeneous charge compression ignition/controlled autoignition combustion process using two-dimensional planar laser-induced fluorescence imaging of formaldehyde
The paper reports an investigation into the HCCI/CAI combustion process using the two-dimensional PLIF technique. The PLIF of formaldehyde formed during the low-temperature reactions of HCCI/CAI combustion was exciting by a tunable dye laser at 355nm wavelength and detected by a gated ICCD camera. Times and locations of the two-stage autoignition of HCCI/CAI combustion were observed in a single cylinder optical engine for several fuel blends mixed with n-heptane and iso-octane. The results show, when pure n-heptane was used, the initial formation of formaldehyde and its subsequent burning were closely related to the start of the low temperature heat release stage and the start of the main heat release stage of HCCI combustion respectively. Meanwhile, it was found that the formation of formaldehyde was more affected by the charge temperature than by the fuel concentration. But its subsequent burning or the start of main heat release combustion toke place at those areas where both the fuel concentration and the charge temperature were sufficient high. As a result, it was found that the presence of stratified residual gases affected both the spatial location and the temporal site of autoignition in a HCCI/CAI combustion engine. All studied fuels were found having similar formaldehyde formation timings with n-heptane. This means that the presence of iso-octane did not affect the start of low temperature reactions apparently. However, the heat release during low temperature reaction was significantly reduced with the presence of iso-octane in the studied fuels. In addition, the presence of iso-octane retarded the start of the main combustion stage
Intrinsic Percolative Superconductivity in Heavily Overdoped High Temperature Superconductors
Magnetic measurements on heavily overdoped ,
, and single crystals reveal
a new type magnetization hysteresis loops characterized by the vanishing of
usual central peak near zero field. Since this effect has been observed in
various systems with very different structural details, it reflects probably a
generic behavior for all high temperature superconductors. This easy
penetration of magnetic flux can be understood in the picture of percolative
superconductivity due to the inhomogeneous electronic state in heavily
overdoped regime.Comment: 4 pages, 5 figure
Mapping the Dirac point in gated bilayer graphene
We have performed low temperature scanning tunneling spectroscopy
measurements on exfoliated bilayer graphene on SiO2. By varying the back gate
voltage we observed a linear shift of the Dirac point and an opening of a band
gap due to the perpendicular electric field. In addition to observing a shift
in the Dirac point, we also measured its spatial dependence using spatially
resolved scanning tunneling spectroscopy. The spatial variation of the Dirac
point was not correlated with topographic features and therefore we attribute
its shift to random charged impurities.Comment: 3 pages, 3 figure
A Dense Retrieval System and Evaluation Dataset for Scientific Computational Notebooks
The discovery and reutilization of scientific codes are crucial in many research activities. Computational notebooks have emerged as a particularly effective medium for sharing and reusing scientific codes. Nevertheless, effectively locating relevant computational notebooks is a significant challenge. First, computational notebooks encompass multi-modal data comprising unstructured text, source code, and other media, posing complexities in representing such data for retrieval purposes. Second, the absence of evaluation datasets for the computational notebook search task hampers fair performance assessments within the research community. Prior studies have either treated computational notebook search as a code-snippet search problem or focused solely on content-based approaches for searching computational notebooks. To address the aforementioned difficulties, we present DeCNR, tackling the information needs of researchers in seeking computational notebooks. Our approach leverages a fused sparse-dense retrieval model to represent computational notebooks effectively. Additionally, we construct an evaluation dataset including actual scientific queries, computational notebooks, and relevance judgments for fair and objective performance assessment. Experimental results demonstrate that the proposed method surpasses baseline approaches in terms of F1@5 and NDCG@5. The proposed system has been implemented as a web service shipped with REST APIs, allowing seamless integration with other applications and web services.</p
Relaxed 2-D Principal Component Analysis by Norm for Face Recognition
A relaxed two dimensional principal component analysis (R2DPCA) approach is
proposed for face recognition. Different to the 2DPCA, 2DPCA- and G2DPCA,
the R2DPCA utilizes the label information (if known) of training samples to
calculate a relaxation vector and presents a weight to each subset of training
data. A new relaxed scatter matrix is defined and the computed projection axes
are able to increase the accuracy of face recognition. The optimal -norms
are selected in a reasonable range. Numerical experiments on practical face
databased indicate that the R2DPCA has high generalization ability and can
achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure
Quark model predictions for photoproduction on the proton
The photoproduction of vector mesons is investigated in a quark model
with an effective Lagrangian. Including both baryon resonance excitations and
{\it t}-channel exchanges, observables for the reactions and are predicted, using the
SU(3)-flavor-blind assumption of non-perturbative QCD.Comment: Revtex, 3 eps figures, revised version accepted by PRC Rapid Comm
Heat conduction in graphene flakes with inhomogeneous mass interface
Using nonequilibrium molecular dynamics simulations, we study the heat
conduction in graphene flakes composed by two regions. One region is
mass-loaded and the other one is intact. It is found that the mass interface
between the two regions greatly decreases the thermal conductivity, but it
would not bring thermal rectification effect. The dependence of thermal
conductivity upon the heat flux and the mass difference ratio are studied to
confirm the generality of the result. The interfacial scattering of solitons is
studied to explain the absence of rectification effect.Comment: 5 pages, 4 figure
- …