37,691 research outputs found

    Subject-specific finite element modelling of the human hand complex : muscle-driven simulations and experimental validation

    Get PDF
    This paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed. The geometries of the phalanges, carpal bones, wrist bones, ligaments, tendons, subcutaneous tissue and skin were all included. The material properties were derived from in-vivo and in-vitro experiment results available in the literature. The boundary and loading conditions were defined based on the kinematic data and muscle forces of a specific subject captured from the in-vivo grasping tests. The predicted contact pressure and contact area were in good agreement with the in-vivo test results of the same subject, with the relative errors for the contact pressures all being below 20%. Finally, sensitivity analysis was performed to investigate the effects of important modelling parameters on the predictions. The results showed that contact pressure and area were sensitive to the material properties and muscle forces. This FE human hand model can be used to make a detailed and quantitative evaluation into biomechanical and neurophysiological aspects of human hand contact during daily perception and manipulation. The findings can be applied to the design of the bionic hands or neuro-prosthetics in the future

    Tunable one-dimensional microwave emissions from cyclic-transition three-level atoms

    Get PDF
    By strongly driving a cyclic-transition three-level artificial atom, demonstrated by such as a flux-based superconducting circuit, we show that coherent microwave signals can be excited along a coupled one-dimensional transmission line. Typically, the intensity of the generated microwave is tunable via properly adjusting the Rabi frequencies of the applied strong-driving fields or introducing a probe field with the same frequency. In practice, the system proposed here could work as an on-chip quantum device with controllable atom-photon interaction to implement a total-reflecting mirror or switch for the propagating probe field.Comment: 4 pages, 5 figure

    Filtering and control for unreliable communication: The discrete-time case

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the past decades, communication networks have been extensively employed in many practical control systems, such as manufacturing plants, aircraft, and spacecraft to transmit information and control signals between the system components. When a control loop is closed via a serial communication channel, a networked control system (NCS) is formed. NCSs have become very popular for their great advantages over traditional systems (e.g., low cost, reduced weight, and power requirements, etc.). Generally, it has been implicitly assumed that the communication between the system components is perfect; that is, the signals transmitted from the plant always arrive at the filter or controller without any information loss. Unfortunately, such an assumption is not always true. For example, a common feature of the NCSs is the presence of significant network-induced delays and data losses across the networks. Therefore, an emerging research topic that has recently drawn much attention is how to cope with the effect of network-induced phenomena due to the unreliability of the network communication. This special issue aims at bringing together the latest approaches to understand, filter, and control for discrete-time systems under unreliable communication. Potential topics include but are not limited to (a) multiobjective filtering or control, (b) network-induced phenomena, (c) stability analysis, (d) robustness and fragility, and (e) applications in real-world discrete-time systems

    Exactly isochoric deformations of soft solids

    Full text link
    Many materials of contemporary interest, such as gels, biological tissues and elastomers, are easily deformed but essentially incompressible. Traditional linear theory of elasticity implements incompressibility only to first order and thus permits some volume changes, which become problematically large even at very small strains. Using a mixed coordinate transformation originally due to Gauss, we enforce the constraint of isochoric deformations exactly to develop a linear theory with perfect volume conservation that remains valid until strains become geometrically large. We demonstrate the utility of this approach by calculating the response of an infinite soft isochoric solid to a point force that leads to a nonlinear generalization of the Kelvin solution. Our approach naturally generalizes to a range of problems involving deformations of soft solids and interfaces in 2 dimensional and axisymmetric geometries, which we exemplify by determining the solution to a distributed load that mimics muscular contraction within the bulk of a soft solid

    Gain without inversion in quantum systems with broken parities

    Full text link
    For a quantum system with broken parity symmetry, selection rules can not hold and cyclic transition structures are generated. With these loop-transitions we discuss how to achieve inversionless gain of the probe field by properly setting the control and auxiliary fields. Possible implementations of our generic proposal with specific physical objects with broken parities, e.g., superconducting circuits and chiral molecules, are also discussed.Comment: 12 pages, 4 figure

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out
    • …
    corecore