31,468 research outputs found

    Multi-expert synthesis for versatile locomotion and manipulation skills

    Get PDF
    This work focuses on generating multiple coordinated motor skills for intelligent systems and studies a Multi-Expert Synthesis (MES) approach to achieve versatile robotic skills for locomotion and manipulation. MES embeds and uses expert skills to solve new composite tasks, and is able to synthesise and coordinate different and multiple skills smoothly. We proposed essential and effective design guidelines for training successful MES policies in simulation, which were deployed on both floating- and fixed-base robots. We formulated new algorithms to systematically determine task-relevant state variables for each individual experts which improved robustness and learning efficiency, and an explicit enforcement objective to diversify skills among different experts. The capabilities of MES policies were validated in both simulation and real experiments for locomotion and bi-manual manipulation. We demonstrated that the MES policies achieved robust locomotion on the quadruped ANYmal by fusing the gait recovery and trotting skills. For object manipulation, the MES policies learned to first reconfigure an object in an ungraspable pose and then grasp it through cooperative dual-arm manipulation

    Photovoltaic Oscillations Due to Edge-Magnetoplasmon Modes in a Very-High Mobility 2D Electron Gas

    Full text link
    Using very-high mobility GaAs/AlGaAs 2D electron Hall bar samples, we have experimentally studied the photoresistance/photovoltaic oscillations induced by microwave irradiation in the regime where both 1/B and B-periodic oscillations can be observed. In the frequency range between 27 and 130 GHz we found that these two types of oscillations are decoupled from each other, consistent with the respective models that 1/B oscillations occur in bulk while the B-oscillations occur along the edges of the Hall bars. In contrast to the original report of this phenomenon (Ref. 1) the periodicity of the B-oscillations in our samples are found to be independent of L, the length of the Hall bar section between voltage measuring leads.Comment: 4 pages, 4 figure

    Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual Observations

    Get PDF
    To proactively navigate and traverse various terrains, active use of visual perception becomes indispensable. We aim to investigate the feasibility and performance of using sparse visual observations to achieve perceptual locomotion over a range of common terrains (steps, ramps, gaps, and stairs) in human-centered environments. We formulate a selection of sparse visual inputs suitable for locomotion over the terrains of interest, and propose a learning framework to integrate exteroceptive and proprioceptive states. We design state observations and a training curriculum to learn feedback control policies effectively over a range of different terrains. We extensively validate and benchmark the learned policy in various tasks: omnidirectional walking on flat ground, and forward locomotion over various obstacles, showing high success rate of traversability. Furthermore, we study exteroceptive ablations and evaluate policy generalization by adding various levels of noise and testing on new unseen terrains. We demonstrate the capabilities of autonomous perceptual locomotion that can be achieved by only using sparse visual observations from direct depth measurements, which are easily available from a Lidar or RGB-D sensor, showing robust ascent and descent over high stairs of 20 cm height, i.e., 50% leg length, and robustness against noise and unseen terrains

    H-Dihyperon in Quark Cluster Model

    Full text link
    The H dihyperon (DH) is studied in the framework of the SU(3) chiral quark model. It is shown that except the σ\sigma chiral field, the overall effect of the other SU(3) chiral fields is destructive in forming a stable DH. The resultant mass of DH in a three coupled channel calculation is ranged from 2225 MeVMeV to 2234 MeVMeV.Comment: 9 pages, emte

    Hierarchical generative modelling for autonomous robots

    Get PDF
    Humans generate intricate whole-body motions by planning, executing and combining individual limb movements. We investigated this fundamental aspect of motor control and approached the problem of autonomous task completion by hierarchical generative modelling with multi-level planning, emulating the deep temporal architecture of human motor control. We explored the temporal depth of nested timescales, where successive levels of a forward or generative model unfold, for example, object delivery requires both global planning and local coordination of limb movements. This separation of temporal scales suggests the advantage of hierarchically organizing the global planning and local control of individual limbs. We validated our proposed formulation extensively through physics simulation. Using a hierarchical generative model, we showcase that an embodied artificial intelligence system, a humanoid robot, can autonomously complete a complex task requiring a holistic use of locomotion, manipulation and grasping: the robot adeptly retrieves and transports a box, opens and walks through a door, kicks a football and exhibits robust performance even in the presence of body damage and ground irregularities. Our findings demonstrated the efficacy and feasibility of human-inspired motor control for an embodied artificial intelligence robot, highlighting the viability of the formulized hierarchical architecture for achieving autonomous completion of challenging goal-directed tasks

    GIST: A generative model with individual and subgroup-based topics for group recommendation

    Full text link
    © 2017 Elsevier Ltd In this paper, a Topic-based probabilistic model named GIST is proposed to infer group activities, and make group recommendations. Compared with existing individual-based aggregation methods, it not only considers individual members’ interest, but also consider some subgroups’ interest. Intuition might seem that when a group of users want to take part in an activity, not every group member is decisive, instead, more likely the subgroups of members having close relationships lead to the final activity decision. That motivates our study on jointly considering individual members’ choices and subgroups’ choices for group recommendations. Based on this, our model uses two kinds of unshared topics to model individual members’ interest and subgroups’ interest separately, and then make final recommendations according to the choices from the two aspects with a weight-based scheme. Moreover, the link information in the graph topology of the groups can be used to optimize the weights of our model. The experimental results on real-life data show that the recommendation accuracy is significantly improved by GIST comparing with the state-of-the-art methods

    Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders

    Get PDF
    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.Accepted manuscrip

    Cosmic ray spectral hardening due to dispersion in the source injection spectra

    Full text link
    Recent cosmic ray (CR) experiments discovered that the CR spectra experience a remarkable hardening for rigidity above several hundred GV. We propose that this is caused by the superposition of the CR energy spectra of many sources that have a dispersion in the injection spectral indices. Adopting similar parameters as those of supernova remnants derived from the Fermi γ\gamma-ray observations, we can reproduce the observational CR spectra of different species well. This may be interpreted as evidence to support the supernova remnant origin of CRs below the knee. We further propose that the same mechanism may explain the "ankle" of the ultra high energy CR spectrum.Comment: 5 pages, 3 figures and 1 table. Updated with the diffusion propagation model, accepted by Phys. Rev.
    • …
    corecore