11,878 research outputs found

    Effects of Length and Diameter of Open-Ended Coaxial Sensor on its Reflection Coefficient

    Get PDF
    This paper presents a calibration technique for a coaxial sensor using a transmission signal approach. The sensor was fabricated from commercially available RG402/U and RG405/U semi-rigid coaxial cable. The length of the coaxial sensor was correlated with the attenuation and standing wave inside the coaxial line. The functions of multiple reflection amplitude and tolerance length with respect to the actual length of coaxial line were empirically formulated using regression analysis. The tolerances and the undesired standing wave which occurs along the coaxial line were analyzed in detai

    Quantum spin mixing in a binary mixture of spin-1 atomic condensates

    Full text link
    We study quantum spin mixing in a binary mixture of spin-1 condensates including coherent interspecies mixing process, using the familiar spinor condensates of 87^{87}Rb and 23^{23}Na atoms in the ground lower hyperfine F=1 manifolds as prototype examples. Within the single spatial mode approximation for each of the two spinor condensates, the mixing dynamics reduce to that of three coupled nonlinear pendulums with clear physical interpretations. Using suitably prepared initial states, it is possible to determine the interspecies singlet-pairing as well as spin-exchange interactions from the subsequent mixing dynamics.Comment: 6 pages, 3 figure

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations

    Encoding a qubit with Majorana modes in superconducting circuits

    Get PDF
    Majorana fermions are long-sought exotic particles that are their own antiparticles. Here we propose to utilize superconducting circuits to construct two superconducting-qubit arrays where Majorana modes can occur. A so-called Majorana qubit is encoded by using the unpaired Majorana modes, which emerge at the left and right ends of the chain in the Majorana-fermion representation. We also show this Majorana qubit in the spin representation and its advantage, over a single superconducting qubit, regarding quantum coherence. Moreover, we propose to use four superconducting qubits as the smallest system to demonstrate the braiding of Majorana modes and show how the states before and after braiding Majoranas can be discriminated.Comment: 10 pages, 3 figures; an enlarged version of arXiv: 1108.3712v

    Effective size of a trapped atomic Bose gas

    Full text link
    We investigate the temperature-dependent effective size of a trapped interacting atomic Bose gas within a mean field theory approximation. The sudden shrinking of the average length, as observed in an earlier experiment by Wang {\it et al.} [Chin. Phys. Lett. {\bf 20}, 799 (2003)], is shown to be a good indication for Bose-Einstein condensation (BEC). Our study also supports the use of the average width of a trapped Bose gas for a nondestructive calibration of its temperature.Comment: RevTex4, 6 pages, 4 eps figures, to appear in Phys. Rev.

    Cerenkov Line Emission as a Possible Mechanism of X-ray Lines in Gamma-ray Bursts

    Full text link
    The recent discoveries of X-ray lines in the afterglows of gamma-ray bursts (GRBs) provide significant clues to the nature of GRB progenitors and central environments. However, the iron line interpretation by fluorescence or recombination mechanism requires a large amount of iron material. We argue that the very strong iron line could be attributed to an alternative mechanism: Cerenkov line emission since relativistic electrons and dense medium exist near GRB sites. Therefore, the broad iron lines are expected, and line intensity will be nearly independent of the iron abundance, the medium with the anomalously high Fe abundance is not required.Comment: 4 pages, revised version accepted for the publication in ApJ

    Generic pixel level object tracker using bi-channel fully convolutional network

    Full text link
    © Springer International Publishing AG 2017. As most of the object tracking algorithms predict bounding boxes to cover the target, pixel-level tracking methods provide a better description of the target. However, it remains challenging for a tracker to precisely identify detailed foreground areas of the target. In this work, we propose a novel bi-channel fully convolutional neural network to tackle the generic pixel-level object tracking problem. By capturing and fusing both low-level and high-level temporal information, our network is able to produce pixel-level foreground mask of the target accurately. In particular, our model neither updates parameters to fit the tracked target nor requires prior knowledge about the category of the target. Experimental results show that the proposed network achieves compelling performance on challenging videos in comparison with competitive tracking algorithms

    Nonlinear optical interactions of topological modes of photonic nanostructures

    Get PDF
    Topological photonics aims to utilize topological photonic bands and corresponding edge modes to implement robust light manipulation. Importantly, topological photonics provide an ideal platform to study nonlinear interactions. In this talk, I will review some recent results regarding nonlinear interactions of one-way edge-modes in frequency mixing processes in topological photonic nanostructures. More specifically, I will discuss the band topology of 2D photonic crystals with hexagonal symmetry and demonstrate that SHG and THG can be implemented via one-way edge modes. Moreover, I will demonstrate that more exotic phenomena, such as slow-light enhancement of nonlinear interactions and harmonic generation upon interaction of backward-propagating edge modes can also be realized. Finally, FWM of topological plasmon modes of graphene plasmonic crystals and SHG upon interaction of valley-Hall topological modes of all-dielectric photonic crystals will be discussed
    • …
    corecore