39,000 research outputs found

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Quantized H-Infinity control for nonlinear stochastic time-delay systems with missing measurements

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the quantized H∞ control problem is investigated for a class of nonlinear stochastic time-delay network-based systems with probabilistic data missing. A nonlinear stochastic system with state delays is employed to model the networked control systems where the measured output and the input signals are quantized by two logarithmic quantizers, respectively. Moreover, the data missing phenomena are modeled by introducing a diagonal matrix composed of Bernoulli distributed stochastic variables taking values of 1 and 0, which describes that the data from different sensors may be lost with different missing probabilities. Subsequently, a sufficient condition is first derived in virtue of the method of sector-bounded uncertainties, which guarantees that the closed-loop system is stochastically stable and the controlled output satisfies H∞ performance constraint for all nonzero exogenous disturbances under the zero-initial condition. Then, the sufficient condition is decoupled into some inequalities for the convenience of practical verification. Based on that, quantized H∞ controllers are designed successfully for some special classes of nonlinear stochastic time-delay systems by using Matlab linear matrix inequality toolbox. Finally, a numerical simulation example is exploited to show the effectiveness and applicability of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Leverhulme Trust of the U.K., the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61028008, 61134009, 61104125, 60974030, and 61074016, and the Alexander von Humboldt Foundation of Germany

    Can the Bump be Observed in the Early Afterglow of GRBS with X-Ray Line Emission Features?

    Full text link
    Extremely powerful emission lines are observed in the X-ray afterglow of several GRBs. The energy contained in the illuminating continuum which is responsible for the line production exceeds 1051^{51} erg, much higher than that of the collimated GRBs. It constrains the models which explain the production of X-ray emission lines. In this paper, We argue that this energy can come from a continuous postburst outflow. Focusing on a central engine of highly magnetized millisecond pulsar or magnetar we find that afterglow can be affected by the illuminating continuum, and therefore a distinct achromatic bump may be observed in the early afterglow lightcurves. With the luminosity of the continuous outflow which produces the line emission, we define the upper limit of the time when the bump feature appears. We argue that the reason why the achromatic bumps have not been detected so far is that the bumps should appear at the time too early to be observed.Comment: 13 pags, 2 tables, appear in v603 n1 pt1 ApJ March 1, 2004 issu
    corecore