21,064 research outputs found
Hyperaccretion Disks around Neutron Stars
(Abridged) We here study the structure of a hyperaccretion disk around a
neutron star. We consider a steady-state hyperaccretion disk around a neutron
star, and as a reasonable approximation, divide the disk into two regions,
which are called inner and outer disks. The outer disk is similar to that of a
black hole and the inner disk has a self-similar structure. In order to study
physical properties of the entire disk clearly, we first adopt a simple model,
in which some microphysical processes in the disk are simplified, following
Popham et al. and Narayan et al. Based on these simplifications, we
analytically and numerically investigate the size of the inner disk, the
efficiency of neutrino cooling, and the radial distributions of the disk
density, temperature and pressure. We see that, compared with the black-hole
disk, the neutron star disk can cool more efficiently and produce a much higher
neutrino luminosity. Finally, we consider an elaborate model with more physical
considerations about the thermodynamics and microphysics in the neutron star
disk (as recently developed in studying the neutrino-cooled disk of a black
hole), and compare this elaborate model with our simple model. We find that
most of the results from these two models are basically consistent with each
other.Comment: 44 pages, 10 figures, improved version following the referees'
comments, main conclusions unchanged, accepted for publication in Ap
Can the Bump be Observed in the Early Afterglow of GRBS with X-Ray Line Emission Features?
Extremely powerful emission lines are observed in the X-ray afterglow of
several GRBs. The energy contained in the illuminating continuum which is
responsible for the line production exceeds 10 erg, much higher than
that of the collimated GRBs. It constrains the models which explain the
production of X-ray emission lines. In this paper, We argue that this energy
can come from a continuous postburst outflow. Focusing on a central engine of
highly magnetized millisecond pulsar or magnetar we find that afterglow can be
affected by the illuminating continuum, and therefore a distinct achromatic
bump may be observed in the early afterglow lightcurves. With the luminosity of
the continuous outflow which produces the line emission, we define the upper
limit of the time when the bump feature appears. We argue that the reason why
the achromatic bumps have not been detected so far is that the bumps should
appear at the time too early to be observed.Comment: 13 pags, 2 tables, appear in v603 n1 pt1 ApJ March 1, 2004 issu
An unexpectedly low-redshift excess of Swift gamma-ray burst rate
Gamma-ray bursts (GRBs) are the most violent explosions in the Universe and
can be used to explore the properties of high-redshift universe. It is believed
that the long GRBs are associated with the deaths of massive stars. So it is
possible to use GRBs to investigate the star formation rate (SFR). In this
paper, we use Lynden-Bell's method to study the luminosity function and
rate of \emph{Swift} long GRBs without any assumptions. We find that the
luminosity of GRBs evolves with redshift as with
. After correcting the redshift evolution through
, the luminosity function can be expressed as
for dim GRBs and for bright GRBs, with the break point
. We also find that the formation
rate of GRBs is almost constant at for the first time, which is
remarkably different from the SFR. At , the formation rate of GRB is
consistent with the SFR. Our results are dramatically different from previous
studies. Some possible reasons for this low-redshift excess are discussed. We
also test the robustness of our results with Monte Carlo simulations. The
distributions of mock data (i.e., luminosity-redshift distribution, luminosity
function, cumulative distribution and distribution) are in good
agreement with the observations. Besides, we also find that there are
remarkable difference between the mock data and the observations if long GRB
are unbiased tracers of SFR at .Comment: 33 pages, 10 figures, 1 table, accepted by ApJ
Gamma-ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly-Magnetized Millisecond Pulsar
We investigate the consequences of a continuously injecting central engine on
the gamma-ray burst afterglow emission, focusing more specifically on a
highly-magnetized millisecond pulsar engine. For initial pulsar parameters
within a certain region of the parameter space, the afterglow lightcurves are
predicted to show a distinctive achromatic bump feature, the onset and duration
of which range from minutes to months, depending on the pulsar and the fireball
parameters. The detection of or upper limits on such features would provide
constraints on the burst progenitor and on magnetar-like central engine models.
An achromatic bump such as that in GRB 000301C afterglow may be caused by a
millisecond pulsar with P0=3.4 millisecond and Bp=2.7e14 Gauss.Comment: 5 pages, emulateapj style, to appear in ApJ Letters, updated with the
accepted version, a few corrections are mad
A rapid cosmic-ray increase in BC 3372-3371 from ancient buried tree rings in China
Cosmic rays interact with the Earth's atmosphere to produce C, which
can be absorbed by trees. Therefore, rapid increases of C in tree rings
can be used to probe previous cosmic-ray events. By this method, three C
rapidly increasing events have been found. Plausible causes of these events
include large solar proton events, supernovae or short gamma-ray bursts.
However, due to the lack of measurements of C by year, the occurrence
frequency of such C rapidly increasing events is poorly known. In
addition, rapid increases may be hidden in the IntCal13 data with five-year
resolution. Here we report the result of C measurements using an ancient
buried tree during the period between BC 3388 and 3358. We find a rapid
increase of about 9\textperthousand~ in the C content from BC 3372 to BC
3371. We suggest that this event could originate from a large solar proton
event.Comment: 23 pages, 3 figures, 2 tables, published in Nature Communication
- …