9,752 research outputs found
Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc
Ultrathin MgB2 superconducting films with a thickness down to 7.5 nm are
epitaxially grown on (0001) Al2O3 substrate by hybrid physical-chemical vapor
deposition method. The films are phase-pure, oxidation-free and continuous. The
7.5 nm thin film shows a Tc(0) of 34 K, which is so far the highest Tc(0)
reported in MgB2 with the same thickness. The critical current density of
ultrathin MgB2 films below 10 nm is demonstrated for the first time as Jc ~
10^6 A cm^{-2} for the above 7.5 nm sample at 16 K. Our results reveal the
excellent superconducting properties of ultrathin MgB2 films with thicknesses
between 7.5 and 40 nm on Al2O3 substrate.Comment: 7 pages, 4 figures, 2 table
The 7-channel FIR HCN Interferometer on J-TEXT Tokamak
A seven-channel far-infrared hydrogen cyanide (HCN) laser interferometer has
been established aiming to provide the line integrated plasma density for the
J-TEXT experimental scenarios. A continuous wave glow discharge HCN laser
designed with a cavity length 3.4 m is used as the laser source with a
wavelength of 337 {\mu}m and an output power up to 100 mW. The system is
configured as a Mach-Zehnder type interferometer. Phase modulation is achieved
by a rotating grating, with a modulation frequency of 10 kHz which corresponds
to the temporal resolution of 0.1 ms. The beat signal is detected by TGS
detector. The phase shift induced by the plasma is derived by the comparator
with a phase sensitivity of 0.06 fringe. The experimental results measured by
the J-TEXT interferometer are presented in details. In addition, the inversed
electron density profile done by a conventional approach is also given. The
kinematic viscosity of dimethyl silicone and vibration control is key issues
for the system performance. The laser power stability under different kinematic
viscosity of silicone oil is presented. A visible improvement of measured
result on vibration reduction is shown in the paper.Comment: conference (15th-International Symposium on Laser-Aided Plasma
Diagnostics
Liquid Crystal-Solid Interface Structure at the Antiferroelectric-Ferroelectric Phase Transition
Total Internal Reflection (TIR) is used to probe the molecular organization
at the surface of a tilted chiral smectic liquid crystal at temperatures in the
vicinity of the bulk antiferroelectric-ferroelectric phase transition. Data are
interpreted using an exact analytical solution of a real model for
ferroelectric order at the surface. In the mixture T3, ferroelectric surface
order is expelled with the bulk ferroelectric-antiferroelectric transition. The
conditions for ferroelectric order at the surface of an antiferroelectric bulk
are presented
Effects of the sintering atmosphere on the superconductivity of SmFeAsO1-xFx compounds
A series of SmFeAsO1-xFx samples were sintered in quartz tubes filled with
air of different pressures. The effects of the sintering atmosphere on the
superconductivity were systematically investigated. The SmFeAsO1-xFx system
maintains a transition temperature (Tc) near 50 K until the concentration of
oxygen in quartz tubes increases to a certain threshold, after which Tc
decreases dramatically. Fluorine losses, whether due to vaporization, reactions
with starting materials, and reactions with oxygen, proved to be detrimental to
the superconductivity of this material. The deleterious effects of the oxygen
in the sintering atmosphere were also discussed in detail.Comment: 9 pages, 5 figure
Kondo effect of an adatom in graphene and its scanning tunneling spectroscopy
We study the Kondo effect of a single magnetic adatom on the surface of
graphene. It was shown that the unique linear dispersion relation near the
Dirac points in graphene makes it more easy to form the local magnetic moment,
which simply means that the Kondo resonance can be observed in a more wider
parameter region than in the metallic host. The result indicates that the Kondo
resonance indeed can form ranged from the Kondo regime, to the mixed valence,
even to the empty orbital regime. While the Kondo resonance displays as a sharp
peak in the first regime, it has a peak-dip structure and/or an anti-resonance
in the remaining two regimes, which result from the Fano resonance due to the
significant background leaded by dramatically broadening of the impurity level
in graphene. We also study the scanning tunneling microscopy (STM) spectra of
the adatom and they show obvious particle-hole asymmetry when the chemical
potential is tuned by the gate voltages applied to the graphene. Finally, we
explore the influence of the direct tunneling channel between the STM tip and
the graphene on the Kondo resonance and find that the lineshape of the Kondo
resonance is unaffected, which can be attributed to unusual large asymmetry
factor in graphene. Our study indicates that the graphene is an ideal platform
to study systematically the Kondo physics and these results are useful to
further stimulate the relevant experimental studies on the system.Comment: 8 pages, 5 figure
The electromagnetic calorimeter of the AMS-02 experiment
The electromagnetic calorimeter (ECAL) of the AMS-02 experiment is a
3-dimensional sampling calorimeter, made of lead and scintillating fibers. The
detector allows for a high granularity, with 18 samplings in the longitudinal
direction, and 72 sampling in the lateral direction. The ECAL primary goal is
to measure the energy of cosmic rays up to few TeV, however, thanks to the fine
grained structure, it can also provide the separation of positrons from
protons, in the GeV to TeV region. A direct measurement of high energy photons
with accurate energy and direction determination can also be provided.Comment: Proceedings of SF2A conference 201
- …
