8,013 research outputs found

    Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc

    Full text link
    Ultrathin MgB2 superconducting films with a thickness down to 7.5 nm are epitaxially grown on (0001) Al2O3 substrate by hybrid physical-chemical vapor deposition method. The films are phase-pure, oxidation-free and continuous. The 7.5 nm thin film shows a Tc(0) of 34 K, which is so far the highest Tc(0) reported in MgB2 with the same thickness. The critical current density of ultrathin MgB2 films below 10 nm is demonstrated for the first time as Jc ~ 10^6 A cm^{-2} for the above 7.5 nm sample at 16 K. Our results reveal the excellent superconducting properties of ultrathin MgB2 films with thicknesses between 7.5 and 40 nm on Al2O3 substrate.Comment: 7 pages, 4 figures, 2 table

    Liquid Crystal-Solid Interface Structure at the Antiferroelectric-Ferroelectric Phase Transition

    Full text link
    Total Internal Reflection (TIR) is used to probe the molecular organization at the surface of a tilted chiral smectic liquid crystal at temperatures in the vicinity of the bulk antiferroelectric-ferroelectric phase transition. Data are interpreted using an exact analytical solution of a real model for ferroelectric order at the surface. In the mixture T3, ferroelectric surface order is expelled with the bulk ferroelectric-antiferroelectric transition. The conditions for ferroelectric order at the surface of an antiferroelectric bulk are presented

    The 7-channel FIR HCN Interferometer on J-TEXT Tokamak

    Full text link
    A seven-channel far-infrared hydrogen cyanide (HCN) laser interferometer has been established aiming to provide the line integrated plasma density for the J-TEXT experimental scenarios. A continuous wave glow discharge HCN laser designed with a cavity length 3.4 m is used as the laser source with a wavelength of 337 {\mu}m and an output power up to 100 mW. The system is configured as a Mach-Zehnder type interferometer. Phase modulation is achieved by a rotating grating, with a modulation frequency of 10 kHz which corresponds to the temporal resolution of 0.1 ms. The beat signal is detected by TGS detector. The phase shift induced by the plasma is derived by the comparator with a phase sensitivity of 0.06 fringe. The experimental results measured by the J-TEXT interferometer are presented in details. In addition, the inversed electron density profile done by a conventional approach is also given. The kinematic viscosity of dimethyl silicone and vibration control is key issues for the system performance. The laser power stability under different kinematic viscosity of silicone oil is presented. A visible improvement of measured result on vibration reduction is shown in the paper.Comment: conference (15th-International Symposium on Laser-Aided Plasma Diagnostics

    Safety and Efficacy of Everolimus in Adult Patients with Neuroendocrine Tumors

    Get PDF
    Neuroendocrine tumors (NETs) consist of a diverse family of tumors which are derived from the neuroendocrine system. Most NETs are well or moderately differentiated tumors with a relatively indolent growth pattern. However, these tumors can cause significant clinical disease due to release of functional products that mediate the carcinoid syndrome and other diverse sequela. They also can grow progressively and cause symptoms from local invasion or distant metastasis. NETs are optimally treated with surgery and somatosatin analogs (SSA’s) to control symptoms but are relatively insensitive to systemic chemotherapy. As a result, patients with advanced unresectable NETs have a poor prognosis. In 2011, two targeted therapies, sunitinib and everolimus were approved in the subset of progressive pancreatic NETs (pNETs). Everolimus is an oral inhibitor of the growth stimulatory mTOR pathway. In Phase 2 trials in NETs and pNETs, everolimus was well tolerated and associated with some response and widespread disease stabilization. In follow-up, randomized Phase 3 trials, everolimus was compared to placebo. In the RADIANT-2 trial, everolimus and a somatostatin analog were used in patients with functional NETs and treatment was associated with an an improvement in progression-free survival (PFS). In the RADIANT-3 trial, patients with pNET were randomized to receive everolimus or placebo along with best supportive care. Everolimus was again associated with improvement in PFS compared to placebo and it has been approved by the FDA for patients with progressive pNET. Everolimus is associated with frequent low grade toxicity but is also notable for increased rates of infection as well as non-infectious pneumonitis. mTOR inhibition with everolimus represents a significant advance in the treatment of advanced neuroendocrine tumors

    A Bayesian graph embedding model for link-based classification problems

    Get PDF
    In recent years, the analysis of human interaction data has led to the rapid development of graph embedding methods. For link-based classification problems, topological information typically appears in various machine learning tasks in the form of embedded vectors or convolution kernels. This paper introduces a Bayesian graph embedding model for such problems, integrating network reconstruction, link prediction, and behavior prediction into a unified framework. Unlike the existing graph embedding methods, this model does not embed the topology of nodes or links into a low-dimensional space but sorts the probabilities of upcoming links and fuses the information of node topology and data domain via sorting. The new model integrates supervised transaction predictors with unsupervised link prediction models, summarizing local and global topological information. The experimental results on a financial trading dataset and a retweet network dataset demonstrate that the proposed feature fusion model outperforms the tested benchmarked machine learning algorithms in precision, recall, and F1-measure. The proposed learning structure has a fundamental methodological contribution and can be extended and applied to various link-based classification problems in different fields

    Microstructure of Injection Moulding Machine Mould Clamping Mechanism: Design and Motion Simulation

    Get PDF
    With the advent of intelligence technologies, more and more machines and devices are involved in the creation of complex structures. In the intelligent manufacturing industries, mouldings including injection moulding, blow moulding, compression moulding, and others play critical roles in manufacturing highly precise parts required for building intelligent machines (such as computers, cell phones, robots etc.). The performance of the clamping mechanism directly affects the quality of the microstructure of injection products. The design of the injection moulding mould clamping mechanism is based on the microstructure characteristics of the trip of the toggle lever mechanism ratio, speed ratio, and force amplification ratio. These are used to study the main performance parameters, such as analysis, as well as for the establishment of the physical model of the clamping mechanism. The model is based on the microstructure of injection of hyperbolic elbow clamping mechanism kinematics simulation. Simulation results and theoretical calculation contrast analysis show that the maximum dynamic template speed is 215.34 mm/s. The dynamic templates and cross-head speed ratio is 2.15; therefore, the design of the injection moulding mould clamping mechanism for the microstructure provides favourable technical support. The method described here is important to build complicated moulds required to build highly precise parts to build intelligent machineries
    corecore