58,680 research outputs found

    Vision-based hand gesture interaction using particle filter, principle component analysis and transition network

    Get PDF
    Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test

    Projection Measurement of the Maximally Entangled N-Photon State for a Demonstration of N-Photon de Broglie Wavelength

    Full text link
    We construct a projection measurement process for the maximally entangled N-photon state (the NOON-state) with only linear optical elements and photodetectors. This measurement process will give null result for any N-photon state that is orthogonal to the NOON state. We examine the projection process in more detail for N=4 by applying it to a four-photon state from type-II parametric down-conversion. This demonstrates an orthogonal projection measurement with a null result. This null result corresponds to a dip in a generalized Hong-Ou-Mandel interferometer for four photons. We find that the depth of the dip in this arrangement can be used to distinguish a genuine entangled four-photon state from two separate pairs of photons. We next apply the NOON state projection measurement to a four-photon superposition state from two perpendicularly oriented type-I parametric down-conversion processes. A successful NOON state projection is demonstrated with the appearance of the four-photon de Broglie wavelength in the interference fringe pattern.Comment: 8 pages, 3 figures, new title, some content change, replaced Fig.

    Brueckner-Hartree-Fock and its renormalized calculations for finite nuclei

    Full text link
    We have performed self-consistent Brueckner-Hartree-Fock (BHF) and its renormalized theory to the structure calculations of finite nuclei. The GG-matrix is calculated within the BHF basis, and the exact Pauli exclusion operator is determined by the BHF spectrum. Self-consistent occupation probabilities are included in the renormalized Brueckner-Hartree-Fock (RBHF). Various systematics and convergences are studies. Good results are obtained for the ground-state energy and radius. RBHF can give a more reasonable single-particle spectrum and radius. We present a first benchmark calculation with other {\it ab initio} methods using the same effective Hamiltonian. We find that the BHF and RBHF results are in good agreement with other ab\it{ab} initio\it{initio} methods
    • …
    corecore