46,238 research outputs found
An experimental study on a motion sensing system for sports training
In sports science, motion data collected from athletes is
used to derive key performance characteristics, such as stride length
and stride frequency, that are vital coaching support information. The
sensors for use must be more accurate, must capture more vigorous
events, and have strict weight and size requirements, since they must
not themselves affect performance. These requirements mean each
wireless sensor device is necessarily resource poor and yet must be
capable of communicating a considerable amount of data, contending
for the bandwidth with other sensors on the body. This paper analyses
the results of a set of network traffic experiments that were designed
to investigate the suitability of conventional wireless motion sensing
system design ďż˝ which generally assumes in-network processing - as
an efficient and scalable design for use in sports training
Compressing Inertial Motion Data in Wireless Sensing Systems – An Initial Experiment
The use of wireless inertial motion sensors, such as accelerometers, for supporting medical care and sport’s training, has been under investigation in recent years. As the number of sensors (or their sampling rates) increases, compressing data at source(s) (i.e. at the sensors), i.e. reducing the quantity of data that needs to be transmitted between the on-body sensors and the remote repository, would be essential especially in a bandwidth-limited wireless environment. This paper presents a set of compression experiment results on a set of inertial motion data collected during running exercises. As a starting point, we selected a set of common compression algorithms to experiment with. Our results show that, conventional lossy compression algorithms would achieve a desirable compression ratio with an acceptable time delay. The results also show that the quality of the decompressed data is within acceptable range
The study of the thermal behavior of a new semicrystalline polyimide
Thermal properties of a new semicrystalline polyimide synthesized from 3,3',4,4' benzophenone tetracarboxylic dianhydride (BTDA) and 2,2 dimethyl 1,2-(4 aminophenoxy) propane (DMDA) were studied. Heat capacities in the solid and liquid states of BTDA-DMDA were measured. The heat capacity increase at the glass transition temperature (T sub g = 230 C) is 145 J/(C mol) for amorphous BTDA-DMDA. The equilibrium heat of fusion of the BTDA-DMDA crystals was obtained using wide angle X ray diffraction and differential scanning calorimetry measurements, and it is 75.8 kJ/mol. Based on the information of crystallinity and the heat capacity increase at T sub g, a rigid amorphous fraction is identified in semicrystalline BTDA-DMDA samples. The rigid amorphous fraction represents an interfacial region between the crystalline and amorphous states. In particular, this fraction increases with the crystallinity of the sample which should be associated with crystal sizes, and therefore, with crystal morphology. It was also found that this polymer has a high temperature crystal phase upon annealing above its original melting temperature. The thermal degradation activation energies are determined to be 154 and 150 kJ/mol in nitrogen and air, respectively
Combining Genome Wide Association Studies and Differential Gene Expression Data Analyses Identifies Candidate Genes Affecting Mastitis Caused by Two Different Pathogens in the Dairy Cow
Mastitis is a costly disease which hampers the dairy industry. Inflammation of the mammary gland is commonly caused by bacterial infection, mainly Escherichia coli, Streptococcus uberis and Staphylococcus aureus. As more bacteria become multi-drug resistant, one potential approach to reduce the disease incidence rate is to breed selectively for the most appropriate and potentially protective innate immune response. The genetic contribution to effective disease resistance is, however, difficult to identify due to the complex interactions that occur. In the present study two published datasets were searched for common differentially expressed genes (DEGs) with similar changes in expression in mammary tissue following intra-mammary challenge with either E. coli or S. uberis. Additionally, the results of seven published genome-wide association studies (GWAS) on different dairy cow populations were used to compile a list of SNPs associated with somatic cell count. All genes located within 2 Mbp of significant SNPs were retrieved from the Ensembl database, based on the UMD3.1 assembly. A final list of 48 candidate genes with a role in the innate immune response identified from both the DEG and GWAS studies was further analyzed using Ingenuity Pathway Analysis. The main signalling pathways highlighted in the response of the bovine mammary gland to both bacterial infections were 1) granulocyte adhesion and diapedesis, 2) ephrin receptor signalling, 3) RhoA signalling and 4) LPS/IL1 mediated inhibition of RXR function. These pathways comprised a network regulating the activity of leukocytes, especially neutrophils, during mammary gland inflammation. The timely and properly controlled movement of leukocytes to infection loci seems particularly important in achieving a good balance between pathogen elimination and excessive tissue damage. These results suggest that polymorphisms in key genes in these pathways such as SELP, SELL, BCAR1, ACTR3, CXCL2, CXCL6, CXCL8 and FABP may influence the ability of dairy cows to resist mastitis
Is GRO J1744-28 a Strange Star?
The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton
Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar
magnetic field Gauss. When the accreted mass of the star exceeds
some critical mass, its crust may break, resulting in conversion of the
accreted matter into strange matter and release of energy. Subsequently, a
fireball may form and expand relativistically outward. The expanding fireball
may interact with the surrounding interstellar medium, causing its kinetic
energy to be radiated in shock waves, producing a burst of x-ray radiation. The
burst energy, duration, interval and spectrum derived from such a model are
consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40
The dependence of the pairwise velocity dispersion on galaxy properties
(abridged) We present measurements of the pairwise velocity dispersion (PVD)
for different classes of galaxies in the Sloan Digital Sky Survey. For a sample
of about 200,000 galaxies, we study the dependence of the PVD on galaxy
properties such as luminosity, stellar mass (M_*), colour (g-r), 4000A break
strength (D4000), concentration index (C), and stellar surface mass density
(\mu_*). The luminosity dependence of the PVD is in good agreement with the
results of Jing & B\"orner (2004) for the 2dFGRS catalog. The value of
\sigma_{12} measured at k=1 h/Mpc decreases as a function of increasing galaxy
luminosity for galaxies fainter than L*, before increasing again for the most
luminous galaxies in our sample. Each of the galaxy subsamples selected
according to luminosity or stellar mass is divided into two further subsamples
according to colour, D4000, C and \mu_*. We find that galaxies with redder
colours and higher D4000, C, and \mu_* values have larger PVDs on all scales
and at all luminosities/stellar masses. The dependence of the PVD on parameters
related to recent star formation(colour, D4000) is stronger than on parameters
related to galaxy structure (C, \mu_*), especially on small scales and for
faint galaxies. The reddest galaxies and galaxies with high surface mass
densities and intermediate concentrations have the highest pairwise peculiar
velocities, i.e. these move in the strongest gravitational fields. We conclude
that the faint red population located in rich clusters is responsible for the
high PVD values that are measured for low-luminosity galaxies on small scales.Comment: 14 pages, 13 figures; reference updated and text slightly changed to
match the published version; data of measurements of power spectrum and PVD
available at http://www.mpa-garching.mpg.de/~leech/papers/clustering
Semiclassical Time Evolution of the Holes from Luttinger Hamiltonian
We study the semi-classical motion of holes by exact numerical solution of
the Luttinger model. The trajectories obtained for the heavy and light holes
agree well with the higher order corrections to the abelian and the non-abelian
adiabatic theories in Ref. [1] [S. Murakami et al., Science 301, 1378(2003)],
respectively. It is found that the hole trajectories contain rapid oscillations
reminiscent of the "Zitterbewegung" of relativistic electrons. We also comment
on the non-conservation of helicity of the light holes.Comment: 4 pages, 5 fugure
Formation and kinetics of transient metastable states in mixtures under coupled phase ordering and chemical demixing
We present theory and simulation of simultaneous chemical demixing and phase
ordering in a polymer-liquid crystal mixture in conditions where isotropic-
isotropic phase separation is metastable with respect to isotropic-nematic
phase transition. It is found that mesophase formation proceeds by a transient
metastable phase that surround the ordered phase, and whose lifetime is a
function of the ratio of diffusional to orientational mobilities. It is shown
that kinetic phase ordering in polymer-mesogen mixtures is analogous to kinetic
crystallization in polymer solutions.Comment: 17 pages, 5 figures accepted for publication in EP
- …