33,341 research outputs found

    Nuclear Modification to Parton Distribution Functions and Parton Saturation

    Full text link
    We introduce a generalized definition of parton distribution functions (PDFs) for a more consistent all-order treatment of power corrections. We present a new set of modified DGLAP evolution equations for nuclear PDFs, and show that the resummed αsA1/3/Q2\alpha_s A^{1/3}/Q^2-type of leading nuclear size enhanced power corrections significantly slow down the growth of gluon density at small-xx. We discuss the relation between the calculated power corrections and the saturation phenomena.Comment: 4 pages, to appear in the proceedings of QM200

    Inelastic neutron scattering studies of Crystal Field Levels in PrOs4_4As12_{12}

    Full text link
    We use neutron scattering to study the Pr3+^{3+} crystalline electric field (CEF) excitations in the filled skutterudite PrOs4_4As12_{12}. By comparing the observed levels and their strengths under neutron excitation with the theoretical spectrum and neutron excitation intensities, we identify the Pr3+^{3+} CEF levels, and show that the ground state is a magnetic Γ4(2)\Gamma_4^{(2)} triplet, and the excited states Γ1\Gamma_1, Γ4(1)\Gamma_4^{(1)} and Γ23\Gamma_{23} are at 0.4, 13 and 23 meV, respectively. A comparison of the observed CEF levels in PrOs4_4As12_{12} with the heavy fermion superconductor PrOs4_4Sb12_{12} reveals the microscopic origin of the differences in the ground states of these two filled skutterudites.Comment: 7 pages, 7 figure

    Comprehensive surface magnetotransport study of SmB6

    Get PDF
    After the theoretical prediction that SmB6 is a topological Kondo insulator, there has been an explosion of studies on the SmB6 surface. However, there is not yet an agreement on even the most basic quantities such as the surface carrier density and mobility. In this paper, we carefully revisit Corbino disk magnetotransport studies to find those surface transport parameters. We first show that subsurface cracks exist in the SmB6 crystals, arising both from surface preparation and during the crystal growth. We provide evidence that these hidden subsurface cracks are additional conduction channels, and the large disagreement between earlier surface SmB6 studies may originate from previous interpretations not taking this extra conduction path into account. We provide an update of more reliable magnetotransport data than the previous one (S. Wolgast et al., Phys. Rev. B 92, 115110) and find that the orders-of-magnitude large disagreements in carrier density and mobility come from the surface preparation and the transport geometry rather than the intrinsic sample quality. From this magnetotransport study, we find an updated estimate of the carrier density and mobility of 2.71×1013 (1/cm2) and 104.5 (cm2/Vsec), respectively. We compare our results with other studies of the SmB6 surface. By this comparison, we provide insight into the disagreements and agreements of the previously reported angle-resolved photoemission spectroscopy, scanning tunneling microscopy, and magnetotorque quantum oscillations measurements

    Interference through quantum dots

    Full text link
    We discuss the effect of quantum interference on transport through a quantum dot system. We introduce an indirect coherent coupling parameter alpha, which provides constructive/destructive interference in the transport current depending on its phase and the magnetic flux. We estimate the current through the quantum dot system using the non-equilibrium Green's function method as well as the master equation method in the sequential tunneling regime. The visibility of the Aharonov-Bohm oscillation is evaluated. For a large inter-dot Coulomb interaction, the current is strongly suppressed by the quantum interference effect, while the current is restored by applying an oscillating resonance field with the frequency of twice the inter-dot tunneling energy.Comment: 10 pages, 3 figure

    Triple sign reversal of Hall effect in HgBa_{2}CaCu_{2}O_{6} thin films after heavy-ion irradiations

    Full text link
    Triple sign reversal in the mixed-state Hall effect has been observed for the first time in ion-irradiated HgBa_{2}CaCu_{2}O_{6} thin films. The negative dip at the third sign reversal is more pronounced for higher fields, which is opposite to the case of the first sign reversal near T_c in most high-T_c superconductors. These observations can be explained by a recent prediction in which the third sign reversal is attributed to the energy derivative of the density of states and to a temperature-dependent function related to the superconducting energy gap. These contributions prominently appear in cases where the mean free path is significantly decreased, such as our case of ion-irradiated thin films.Comment: 4 pages, 3 eps figures, submitted Phys. Rev. Let

    Universality properties of the stationary states in the one-dimensional coagulation-diffusion model with external particle input

    Full text link
    We investigate with the help of analytical and numerical methods the reaction A+A->A on a one-dimensional lattice opened at one end and with an input of particles at the other end. We show that if the diffusion rates to the left and to the right are equal, for large x, the particle concentration c(x) behaves like As/x (x measures the distance to the input end). If the diffusion rate in the direction pointing away from the source is larger than the one corresponding to the opposite direction the particle concentration behaves like Aa/sqrt(x). The constants As and Aa are independent of the input and the two coagulation rates. The universality of Aa comes as a surprise since in the asymmetric case the system has a massive spectrum.Comment: 27 pages, LaTeX, including three postscript figures, to appear in J. Stat. Phy

    Diffusion-Limited Aggregation Processes with 3-Particle Elementary Reactions

    Full text link
    A diffusion-limited aggregation process, in which clusters coalesce by means of 3-particle reaction, A+A+A->A, is investigated. In one dimension we give a heuristic argument that predicts logarithmic corrections to the mean-field asymptotic behavior for the concentration of clusters of mass mm at time tt, c(m,t) m1/2(log(t)/t)3/4c(m,t)~m^{-1/2}(log(t)/t)^{3/4}, for 1<<m<<t/log(t)1 << m << \sqrt{t/log(t)}. The total concentration of clusters, c(t)c(t), decays as c(t) log(t)/tc(t)~\sqrt{log(t)/t} at t>t --> \infty. We also investigate the problem with a localized steady source of monomers and find that the steady-state concentration c(r)c(r) scales as r1(log(r))1/2r^{-1}(log(r))^{1/2}, r1r^{-1}, and r1(log(r))1/2r^{-1}(log(r))^{-1/2}, respectively, for the spatial dimension dd equal to 1, 2, and 3. The total number of clusters, N(t)N(t), grows with time as (log(t))3/2(log(t))^{3/2}, t1/2t^{1/2}, and t(log(t))1/2t(log(t))^{-1/2} for dd = 1, 2, and 3. Furthermore, in three dimensions we obtain an asymptotic solution for the steady state cluster-mass distribution: c(m,r)r1(log(r))1Φ(z)c(m,r) \sim r^{-1}(log(r))^{-1}\Phi(z), with the scaling function Φ(z)=z1/2exp(z)\Phi(z)=z^{-1/2}\exp(-z) and the scaling variable z m/log(r)z ~ m/\sqrt{log(r)}.Comment: 12 pages, plain Te

    Exact Results for a Three-Body Reaction-Diffusion System

    Full text link
    A system of particles hopping on a line, singly or as merged pairs, and annihilating in groups of three on encounters, is solved exactly for certain symmetrical initial conditions. The functional form of the density is nearly identical to that found in two-body annihilation, and both systems show non-mean-field, ~1/t**(1/2) instead of ~1/t, decrease of particle density for large times.Comment: 10 page
    corecore