33,341 research outputs found
Nuclear Modification to Parton Distribution Functions and Parton Saturation
We introduce a generalized definition of parton distribution functions (PDFs)
for a more consistent all-order treatment of power corrections. We present a
new set of modified DGLAP evolution equations for nuclear PDFs, and show that
the resummed -type of leading nuclear size enhanced power
corrections significantly slow down the growth of gluon density at small-.
We discuss the relation between the calculated power corrections and the
saturation phenomena.Comment: 4 pages, to appear in the proceedings of QM200
Inelastic neutron scattering studies of Crystal Field Levels in PrOsAs
We use neutron scattering to study the Pr crystalline electric field
(CEF) excitations in the filled skutterudite PrOsAs. By comparing
the observed levels and their strengths under neutron excitation with the
theoretical spectrum and neutron excitation intensities, we identify the
Pr CEF levels, and show that the ground state is a magnetic
triplet, and the excited states ,
and are at 0.4, 13 and 23 meV, respectively. A comparison of the
observed CEF levels in PrOsAs with the heavy fermion superconductor
PrOsSb reveals the microscopic origin of the differences in the
ground states of these two filled skutterudites.Comment: 7 pages, 7 figure
Recommended from our members
Nanoindentation Of Si Nanostructures: Buckling And Friction At Nanoscales
A nanoindentation system was employed to characterize mechanical properties of silicon nanolines (SiNLs), which were fabricated by an anisotropic wet etching (AWE) process. The SiNLs had the linewidth ranging from 24 nm to 90 nm, having smooth and vertical sidewalls and the aspect ratio (height/linewidth) from 7 to 18. During indentation, a buckling instability was observed at a critical load, followed by a displacement burst without a load increase, then a full recovery of displacement upon unloading. This phenomenon was explained by two bucking modes. It was also found that the difference in friction at the contact between the indenter and SiNLs directly affected buckling response of these nanolines. The friction coefficient was estimated to be in a range of 0.02 to 0.05. For experiments with large indentation displacements, irrecoverable indentation displacements were observed due to fracture of Si nanolines, with the strain to failure estimated to be from 3.8% to 9.7%. These observations indicated that the buckling behavior of SiNLs depended on the combined effects of load, line geometry, and the friction at contact. This study demonstrated a valuable approach to fabrication of well-defined Si nanoline structures and the application of the nanoindentation method for investigation of their mechanical properties at the nanoscale.Microelectronics Research Cente
Comprehensive surface magnetotransport study of SmB6
After the theoretical prediction that SmB6 is a topological Kondo insulator, there has been an explosion of studies on the SmB6 surface. However, there is not yet an agreement on even the most basic quantities such as the surface carrier density and mobility. In this paper, we carefully revisit Corbino disk magnetotransport studies to find those surface transport parameters. We first show that subsurface cracks exist in the SmB6 crystals, arising both from surface preparation and during the crystal growth. We provide evidence that these hidden subsurface cracks are additional conduction channels, and the large disagreement between earlier surface SmB6 studies may originate from previous interpretations not taking this extra conduction path into account. We provide an update of more reliable magnetotransport data than the previous one (S. Wolgast et al., Phys. Rev. B 92, 115110) and find that the orders-of-magnitude large disagreements in carrier density and mobility come from the surface preparation and the transport geometry rather than the intrinsic sample quality. From this magnetotransport study, we find an updated estimate of the carrier density and mobility of 2.71×1013 (1/cm2) and 104.5 (cm2/Vsec), respectively. We compare our results with other studies of the SmB6 surface. By this comparison, we provide insight into the disagreements and agreements of the previously reported angle-resolved photoemission spectroscopy, scanning tunneling microscopy, and magnetotorque quantum oscillations measurements
Interference through quantum dots
We discuss the effect of quantum interference on transport through a quantum
dot system. We introduce an indirect coherent coupling parameter alpha, which
provides constructive/destructive interference in the transport current
depending on its phase and the magnetic flux. We estimate the current through
the quantum dot system using the non-equilibrium Green's function method as
well as the master equation method in the sequential tunneling regime. The
visibility of the Aharonov-Bohm oscillation is evaluated. For a large inter-dot
Coulomb interaction, the current is strongly suppressed by the quantum
interference effect, while the current is restored by applying an oscillating
resonance field with the frequency of twice the inter-dot tunneling energy.Comment: 10 pages, 3 figure
Triple sign reversal of Hall effect in HgBa_{2}CaCu_{2}O_{6} thin films after heavy-ion irradiations
Triple sign reversal in the mixed-state Hall effect has been observed for the
first time in ion-irradiated HgBa_{2}CaCu_{2}O_{6} thin films. The negative dip
at the third sign reversal is more pronounced for higher fields, which is
opposite to the case of the first sign reversal near T_c in most high-T_c
superconductors. These observations can be explained by a recent prediction in
which the third sign reversal is attributed to the energy derivative of the
density of states and to a temperature-dependent function related to the
superconducting energy gap. These contributions prominently appear in cases
where the mean free path is significantly decreased, such as our case of
ion-irradiated thin films.Comment: 4 pages, 3 eps figures, submitted Phys. Rev. Let
Universality properties of the stationary states in the one-dimensional coagulation-diffusion model with external particle input
We investigate with the help of analytical and numerical methods the reaction
A+A->A on a one-dimensional lattice opened at one end and with an input of
particles at the other end. We show that if the diffusion rates to the left and
to the right are equal, for large x, the particle concentration c(x) behaves
like As/x (x measures the distance to the input end). If the diffusion rate in
the direction pointing away from the source is larger than the one
corresponding to the opposite direction the particle concentration behaves like
Aa/sqrt(x). The constants As and Aa are independent of the input and the two
coagulation rates. The universality of Aa comes as a surprise since in the
asymmetric case the system has a massive spectrum.Comment: 27 pages, LaTeX, including three postscript figures, to appear in J.
Stat. Phy
Diffusion-Limited Aggregation Processes with 3-Particle Elementary Reactions
A diffusion-limited aggregation process, in which clusters coalesce by means
of 3-particle reaction, A+A+A->A, is investigated. In one dimension we give a
heuristic argument that predicts logarithmic corrections to the mean-field
asymptotic behavior for the concentration of clusters of mass at time ,
, for . The total
concentration of clusters, , decays as at . We also investigate the problem with a localized steady source of
monomers and find that the steady-state concentration scales as
, , and , respectively,
for the spatial dimension equal to 1, 2, and 3. The total number of
clusters, , grows with time as , , and
for = 1, 2, and 3. Furthermore, in three dimensions we
obtain an asymptotic solution for the steady state cluster-mass distribution:
, with the scaling function
and the scaling variable .Comment: 12 pages, plain Te
Exact Results for a Three-Body Reaction-Diffusion System
A system of particles hopping on a line, singly or as merged pairs, and
annihilating in groups of three on encounters, is solved exactly for certain
symmetrical initial conditions. The functional form of the density is nearly
identical to that found in two-body annihilation, and both systems show
non-mean-field, ~1/t**(1/2) instead of ~1/t, decrease of particle density for
large times.Comment: 10 page
- …
